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Abstract

According to the permanent income logic, individuals form expectations about their ability to pro-

duce in the long run and decide how much to consume today according to their forecasts. This

paper documents that deviations of current consumption from its permanent level warranted by

productivity—termed the consumption gap—comove with survey measures of consumer sentiment

and forecast stock returns in- and out-of-sample, subsuming other well–known consumption–based

predictors. Using the consumption gap to time the market, a mean–variance investor would achieve

an annualized average certainty equivalent return of 2.39%. In the cross–section of stocks, the

consumption gap relates to the time–varying coefficients of a conditional CAPM, suggesting that

temporary consumption fluctuations track the price of market risk. This result leads to an empir-

ical stochastic discount factor that displays properties comparable to theoretical counterparts in

benchmark macro–finance models.
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Rüdiger Weber, Zhengyang Xu, Tony Zhang, and many seminar participants for insightful comments. Part of
this paper has been written while visiting Northwestern Kellogg; I thankfully acknowledge financial support
from the OeAD (Marietta Blau Grant) during this time. All errors, of course, are my own.
†Vienna Graduate School of Finance (VGSF), WU Vienna, Welthandelsplatz 1, Building D4, 1020 Vienna,

Austria. E-mail: alessandro.melone@wu.ac.at. Personal website: Homepage.

mailto:alessandro.melone@wu.ac.at
https://sites.google.com/view/alessandro-melone/home


1 Introduction

Expected returns vary over time: The market risk premium is higher in recessions than

it is in expansions (e.g., Fama and French, 1989; Ferson and Harvey, 1991). Thus, stock

returns should be predictable using macroeconomic variables at business cycle frequencies.

Yet, while the predictability of returns using equity–valuation ratios is well documented,

macroeconomic fundamentals have proven dismal in forecasting excess stock returns, raising

the question of why return predictability cannot be linked to the real economy.

This paper proposes a novel approach to studying the link between expected returns and

consumption expenditures.1 I start by revisiting the permanent income logic: Individuals

form expectations about their ability to produce in the long run and decide how much to

consume today according to their forecasts. This productivity expectation path represents

the permanent component of consumption. I find that consumption spending fluctuates

around its permanent level warranted by productivity. These transitory consumption devi-

ations predict stock returns as they are associated with the variation of the market price of

risk over the business cycle.

To see this point, Figure 1 shows the dynamics of US aggregate consumption expenditures

(red line) and its permanent productivity path (blue line) in the period covering the last

two recessions. I use the trend in real GDP as a measure of this permanent component.

1A sound link between the time–varying market price of risk and fluctuations in consumption is a central
prediction of several macro–finance theories, including Campbell and Cochrane (1999) and Chan and Kogan
(2002). However, empirically, it has been challenging to validate such a prediction. Indeed, the puzzling
empirical disconnect between time–series movements in stock returns and consumption is still a matter of
debate (see, e.g., Lettau and Ludvigson, 2010). My work is also inspired by Fama (1991): “[. . . ] we can
hope for a coherent story that (1) relates the cross–section properties of expected returns to the variation of
expected returns through time, and (2) relates the behavior of expected returns to the real economy [. . . ].
We can, however, hope to know more about the links between expected returns and the macro–variables.”
This paper aims at establishing one of these links.
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Figure 1: Consumption Expenditures and Temporary Fluctuations. This figure shows
aggregate consumption expenditures (non-durables and services from NIPA, seasonally adjusted, in real per
capita terms, 2012 chain-weighted dollars) and the trend in real per capita GDP. I use the CBO potential
output as the trend in real GDP. Potential output has been normalized to have the same unconditional mean
of consumption in the reported sample period. Shaded areas are NBER recessions. Quarterly observations.
The sample period is 2007Q1 to 2020Q4.

I denote the difference between current consumption and the trend in real GDP as the

consumption gap. When the consumption gap is negative (the red line is below the blue

line), individuals on average underestimate their expected productivity path, contributing to

lower spending today. This situation corresponds to bad economic periods—the aftermath

of the Great Financial Crisis and the COVID-19 pandemic—in which individuals ask for a

larger compensation for bearing market risk, thus leading to a higher market risk premium

(e.g., Campbell and Cochrane, 1999). The converse is true when the consumption gap is

positive (the red line is above the blue line). Therefore, the consumption gap should be

inversely related to expected stock returns.
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This paper documents that the consumption gap is a strong predictor of stock returns.2

For the US stock market in the period 1967–2020, I find that for a drop in current consump-

tion below the trend in real GDP of 1%, the expected market excess return over the next

quarter (next year) increases by about 0.9% (3.6%). The R2 from these predictive regressions

is about 4% at a quarterly horizon, and it raises to 12% at one–year horizon. Stock market

predictability holds out-of-sample, for different aggregation horizons, using alternative mea-

sures for the permanent component, and on international data. Also, a reduced–form VAR

exercise confirms that the consumption gap has high marginal predictive power for market

returns.

As macroeconomic data typically feature measurement errors and are revised, and the

trend in real GDP is a latent process that needs to be estimated, a natural question is whether

using only information available in real–time would affect the forecasting performance of the

consumption gap. To address this concern, I replicate both in-sample and out-of-sample

analyses using only data and parameter estimates that were known when the forecast was

made. Using strictly information available in real–time, I find consistent evidence that the

consumption gap predicts stock returns.

The informative content of the consumption gap to predict excess market returns broadly

subsumes the predictive power of alternative predictors. Specifically, when running a horse

2In a seminal paper, Lettau and Ludvigson (2001a) introduce a novel market return predictor cay, com-
puted as deviations of consumption from asset holdings and labor income; cay is a proxy for the consumption
to current wealth ratio. Differently, I focus on deviations of current consumption from permanent productiv-
ity. Since consumption and wealth are largely affected by the same aggregate shocks, they feature correlated
temporary fluctuations, thus using current wealth to detrend consumption smooths part of these temporary
fluctuations away. Instead, I propose to use the permanent component of real GDP to detrend current con-
sumption. This approach allows to retain and identify temporary fluctuations in consumption. Furthermore,
notice that cay should predict returns with a positive sign, whereas cgap with a negative sign. When cay
is low, wealth is temporarily high, and future expected returns are low; when cgap is low, consumption is
temporarily low, and future expected returns are high.
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race of the consumption gap against other market return predictors (dividend-price ratio,

long-term government bond returns, inflation, and investment-to-capital ratio) or consumption-

based predictors (e.g., cay, Lettau and Ludvigson, 2001a; surplus-to-consumption ratio,

Campbell and Cochrane, 1999; long-run consumption, Bansal and Yaron, 2004; cyclical con-

sumption, Atanasov, Møller, and Priestley, 2020), I find that the consumption gap captures

most of the variation in expected excess market returns. Further, the consumption gap pre-

dicts other characteristics-based systematic financial factors, like value (Fama and French,

1993); investment, return on equity (ROE), and expected growth (Hou, Xue, and Zhang,

2015; Hou et al., 2018); the two mispricing factors constructed in Stambaugh and Yuan

(2016); and the two behavioral factors proposed by Daniel, Hirshleifer, and Sun (2020).

This time series predictability is both statistically and economically significant. A mean-

variance investor who allocates her wealth between equity and risk-free Treasury bills each

quarter would be willing to pay an annualized fee of 2.39% to a portfolio manager who

uses the consumption gap to predict aggregate market returns rather than the historical

mean. This market timing strategy generates a significant positive alpha with respect to

both unconditional and alternative conditional models. Having at disposal a parsimonious

predictive model with a single predictor is particularly valuable in the age of big data in

which the curse of dimensionality is a severe concern (e.g., Martin and Nagel, 2021).

I have started from the permanent income logic to identify the consumption gap. Ac-

cording to the standard theory, consumption should equal its permanent path warranted

by productivity in every period. However, unlike the standard theory, current consump-

tion temporarily deviates from its permanent path. The empirical evidence suggests that

these temporary consumption deviations are consistent with a view that when individuals

receive good (bad) information about the state of the economy, they become more optimistic
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(pessimistic) about their lifetime capacity to produce and consume more (less). I find that

periods in which aggregate consumption is above (below) the trend in real GDP and the

consumption gap is positive (negative) coincide on average with periods in which measures

of consumer confidence are high (low).

Why does the consumption gap predict returns? Particularly, is predictability due to

mispricing or time–varying market risk premium? My analysis supports the latter view for

two reasons. First, the consumption gap does not contain the level of stock prices, thus

removing any suspicion that returns are predictable due to a mechanical mean-reversion

of prices. Second, the cross-sectional analysis shows that the consumption gap tracks the

market price of risk over time.

Specifically, I estimate a conditional version of the Capital Asset Pricing Model (CAPM)

in which the stochastic discount factor (SDF) is linear in the market portfolio and its coeffi-

cients are time-varying. The coefficients are a linear function of the consumption gap. The

intuition for this specification is that the price of market risk is higher in bad times, when the

consumption gap is negative and marginal utility is high, than it is in good times, when the

consumption gap is positive and marginal utility is low. Conditioning the SDF coefficients

using the information contained in the consumption gap leads to an unconditional two-factor

model, in which the two factors are the excess market return and the excess market return

scaled by the consumption gap. The market portfolio is the only fundamental factor. The

scaled excess market can be interpreted as a managed portfolio which invests more on the

market when the consumption gap is high, and vice versa. Since the consumption gap

negatively predicts the stock market, the managed portfolio represents a hedge against time-

varying equity premia as it performs well when the stock market is low and marginal utility

is high. Thus, the risk premium associated with this managed portfolio should be negative.
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The cross-sectional analysis confirms this prediction.

Furthermore, the conditional version of the CAPM in which I use the consumption gap

as a conditioning variable shows a significant ability at explaining cross-sectional variation

in betas across different test assets when compared with other unconditional and conditional

single-factor models. For the 25 Portfolios sorted on Size and Book-to-Market, using the

consumption gap as a conditioning variable leads to an improvement in the cross-sectional

R2 of about 14% with respect to the unconditional CAPM and of about 8% with respect to

the conditional CAPM of Lettau and Ludvigson (2001b). I find similar improvements for

many test assets, including the large cross-section of test assets used, e.g., in Kelly, Kozak,

and Giglio (2020) and Kozak, Nagel, and Santosh (2020).

Finally, I use the SDF estimates to construct an empirical SDF and study its dynamics.

This estimated SDF fluctuates substantially over time, with an average annualized condi-

tional variance of 0.9, a value comparable to theoretical counterparts used, e.g., in long-run

risk or habit models. Moreover, I find that the SDF variance is descriptive about the state of

the economy. Indeed, the variance of the SDF correlates with measures of economic activity,

and large spikes in the SDF coincide with periods of bad economic conditions and financial

distress—the 1970s energy crisis, the early 1980s recession, the Dot-com bubble, the Great

Financial Crisis 2007–2009, and the COVID-19 pandemic.

These periods are also associated with more pessimistic aggregate productivity expecta-

tions. In these situations, current consumption drops below the trend in real GDP, marginal

utility is high, and individuals demand higher compensation for bearing risks. I document

that the price of market risk is inversely related to measures of macroeconomic optimism,

consistent with a model of heterogeneous beliefs about the expected growth rate of the econ-
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omy (Bhamra and Uppal, 2014). Overall, these results lend support to macro-finance theories

aimed at understanding cyclical variation in the price of market risk (e.g., Constantinides

and Duffie, 1996; Campbell and Cochrane, 1999; Chan and Kogan, 2002; Bansal and Yaron,

2004; Barro, 2009; Gârleanu and Panageas, 2015; Barberis, Greenwood, Jin, and Shleifer,

2015).

This paper contributes to the empirical literature on conditional pricing models.3 Es-

pecially, my analysis relates to work by Lettau and Ludvigson (2001a; 2001b). Lettau and

Ludvigson (2001b), building on Lettau and Ludvigson (2001a), study several conditional

versions of the CAPM and the consumption CAPM (CCAPM) using cay—a proxy for the

consumption-to-wealth ratio—as a conditioning variable. I investigate the relationship be-

tween consumption and permanent productivity rather than current wealth. Indeed, using

current wealth to detrend consumption partially cancels temporary fluctuations in consump-

tion away when consumption and wealth are exposed to same aggregate shocks. I show that

these temporary consumption fluctuations track the price of market risk over the business

cycle.

This paper also relates to the empirical macro-finance literature that investigates the

relationship between consumption and asset prices. Several relevant papers in this literature

address the empirical failures of consumption-based asset pricing models by proposing al-

ternative consumption growth risk measures and testing their cross-sectional pricing ability

(e.g., Parker and Julliard, 2005; Jagannathan and Wang, 2007; Savov, 2011; Kroencke, 2017;

Bandi and Tamoni, 2020; Liu and Matthies, 2021; Bryzgalova and Julliard, 2021). My ap-

3My paper draws important economic insights from Gibbons and Ferson (1985); Hansen and Richard
(1987); Bollerslev, Engle, and Wooldridge (1988); Ferson and Schadt (1996); Ferson and Harvey (1999);
Jagannathan and Wang (1996); Duffee (2005); Santos and Veronesi (2006); Bali (2008); Whelan (2008);
Nagel and Singleton (2011); Roussanov (2014); Møller and Rangvid (2015); Hasler and Martineau (2020);
Barroso, Boons, and Karehnke (2021); Gormsen and Jensen (2021).
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proach is complementary to this literature. Indeed, I find that studying consumption levels

uncovers a novel consumption-based return predictor.

2 Consumption Expenditures, Productivity Expecta-

tions, and the Consumption Gap

In this Section, I show how to construct the consumption gap and study its properties. Then,

I discuss the potential origins of temporary fluctuations in aggregate consumption and their

interpretation.

2.1 The Consumption Gap

Individuals form estimates of their ability to produce in the long run, and, according to

this estimate, they decide how much to consume today. This estimate can be permanent in-

come (Friedman, 1957), wealth (Modigliani, 1971), or long-run productivity (e.g., Blanchard,

L’Huillier, and Lorenzoni, 2013).

Following Blanchard, L’Huillier, and Lorenzoni (2013), I assume that households set

consumption equal to their long-run productivity expectations:

ct = lim
j→∞

Et [yt+j − jµ] (1)

where ct is log aggregate consumption, yt is log real gross domestic product (GDP), and

µ ≡ E[∆yt]. Notice that limj→∞ Et [yt+j − jµ] = yt +
∑∞

j=1 Et [∆yt+j − µ]: long-run pro-

ductivity expectations are current real GDP plus all expected future real GDP growth.
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Equivalently, long-run productivity expectations are the stochastic trend in real GDP.4 I

propose to employ the US Congressional Budget Office (CBO) potential output as a bench-

mark measure of long-term productivity expectations.5 However, I show that both in-sample

and out-of-sample results hold using alternative measures of the permanent component of

consumption (see Section 3.3). The fact that predictability results are robust to alternative

methods and variables used to estimate the permanent consumption component suggests that

predictability stems from the informative content in temporary consumption expenditures

fluctuations.

In the main analysis, I use the CBO potential output rather than alternative measures

for the trend in real GDP for several reasons. First, it is based on the standard framework of

the Solow growth model allowing for a clear accounting for the different sources of growth—

labor, capital accumulation, and total factor productivity. Second, using as an alternative to

compute the stochastic trend in real GDP a filtering method like the Hodrick-Prescott (HP)

filter can introduce spurious dynamic relations that have no basis in the underlying data-

generating process and generates inconsistent filtered values across the estimation sample

(e.g., Hamilton, 2018). Then, many filtering methods do not benchmark their trends to any

external measure of capacity. Therefore, these estimates cannot be interpreted as the level

of output consistent with stable inflation. Finally, it is ready-to-use, extensively used in

4This is equivalent to assuming that consumption and real GDP share the same stochastic trend. The idea
that output and consumption share the same stochastic trend, i.e., potential consumption equals potential
output, is common in the real business cycle literature. Recently, this assumption has been used also in the
consumption-based macro-finance model of Campbell, Pflueger, and Viceira (2020). In Appendix B, I report
results for this cointegrating relationship.

5Potential output is the real GDP an economy would produce with a high rate of use of its capital and
labor resources; it is a measure of the level of real GDP consistent with stable inflation. The US Congressional
Budget Office (CBO) provides estimates of potential output together with its projections up to ten-years
ahead. Data are available at https://fred.stlouisfed.org/series/GDPPOT; I report more details on its
construction in Appendix A.1.
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academic work and by policy makers, and freely available on FRED. One possible concern

about CBO potential output is that it is subject to measurement errors and revisions that can

potentially affect results in empirical investigations. I address this issue using also unrevised

real-time data and find uniform evidence in favor of return predictability.

I formally test whether log potential GDP describes log aggregate consumption. To this

end, I consider the following regression:

ct = α + βypott + vt , (2)

where ct and ypott are respectively quarterly real per-capita log consumption NIPA expen-

ditures (non-durable and services) and real per-capita log potential output. If equation (2)

delivers stationary residuals, then there exists a long-run relation between consumption lev-

els and potential output such that the two series cannot drift apart for an indefinite time.

In this case, consumption expenditures and its permanent level warranted by productivity

expectations have a special relationship: They are cointegrated.

I estimate equation (2) over the sample period from 1967Q1 to 2020Q4. To do so,

I use the Dynamic OLS (DOLS) approach proposed by Stock and Watson (1993). The

DOLS technique delivers optimal estimates of the parameters in a cointegrating regression

by adding n leads and lags to the regression to eliminate asymptotically any bias due to
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serial correlation or endogeneity.6 Thus, I estimate the following regression by OLS:

ct = α + βypott +
n∑

j=−n

bj∆ypott−j + vt ,

where ∆ denotes first difference. Following Lettau and Ludvigson (2001a), I set n = 8 and

exclude the deterministic trend. I obtain the following estimates

ct = − 0.325
(−0.749, 0.099)

+ 0.982
(0.941, 1.024)

· ypott ,

where in parenthesis I report the 95% confidence intervals.

A few comments are in order. First, as predicted by equation (1), I find that log con-

sumption and log potential output have a cointegrating vector (1,−1). Second, the null

of non-stationarity for the residuals is uniformly rejected: the Phillips-Perron (PP) Unit

Root Test delivers a p-value lower than 0.01 (PP test statistic = −39.77), and the Engle-

Granger (EG) Cointegration Test delivers a t-stat of −4.164, which is far below the robust

t-stat proposed by MacKinnon (2010) for testing cointegrating residuals. Also, the null of

no-cointegration in the Phillips-Ouliaris (PO) Cointegration Test is rejected with a p-value

lower than 0.01 (PO test statistics = −40.68).

Given this empirical evidence, I define the consumption gap as:

cgapt = ct − ypott . (3)

6It is important to estimate cointegrating regression parameters via DOLS, because DOLS estimates
are “superconsistent”, namely the estimates converge to the true parameter values at a rate proportional to
the sample size T rather than proportional to

√
T . This fact guarantees that estimates of α and β will be

consistent despite the fact that the errors vt will typically be correlated with ypott.
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As recommended by Ferson, Sarkissian, and Simin (2003), I demean the scaling variable

cgapt in all the empirical investigations of this paper. Fitting an AR(1) for the consumption

gap delivers a first-order autocorrelation parameter of 0.904, which implies an half-life of

almost two years (log(0.5)/ log(0.904) = 6.87 quarters). The consumption gap correlates

with the business cycle: it reaches its highest values around the onset of recessions, drops

throughout economic downturns, and rises after recessions, i.e., the cgap is procyclical. For

instance, the correlation of cgap with industrial production annual growth and the output

gap is, respectively, 46% and 70%.

The fact that consumption spending levels temporarily deviate from their permanent

component, i.e., that the consumption gap is not always zero, naturally leads to a new

permanent–transitory decomposition of the levels of consumption. Such a decomposition

allows to dig deeper into the question of which component of consumption relates to stock

returns. Specifically, in Appendix C.2, I show that assuming that the consumption gap

follows a stationary autoregressive process of order 1, log consumption growth ∆ct can be

written as:

∆ct = µ+ (ρ− 1)cgapt−1 + ηt + εt , (4)

where ηt represents the shock to the permanent component limj→∞ Et [yt+j − jµ] in equation

(1) and εt is the shock to the consumption gap.7 Since | ρ |< 1, (ρ − 1) < 0, thus positive

consumption gap relates to low future consumption growth.

7Pohl, Schmedders, and Wilms (2016) introduce a similar consumption growth decomposition to study a
theoretical asset pricing model with non-permanent shocks to consumption. Chernov, Lochstoer, and Song
(2021) use a similar specification but with heteroskedastic errors to explain several puzzles about the stock-
bond interaction. Also, notice that specification (4) features a time-varying mean in consumption growth,
like in long-run risk models (Bansal and Yaron, 2004). However, the consumption gap is significantly less
persistent than the predictable consumption component discussed in this literature. For example, Bansal
and Yaron (2004) calibrate the AR(1) parameter ρ = 0.979, which corresponds to an half-life of more than
8 years. Recent work that study non-i.i.d consumption include Ortu, Tamoni, and Tebaldi (2013), Bidder
and Dew-Becker (2016), and Schorfheide, Song, and Yaron (2018).
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Equation (4) shows that when consumption levels contain both a permanent and a tem-

porary component (see (C.1)), consumption growth features three elements: news to the

permanent and to the temporary component plus the lagged temporary component itself.

Thus, consumption growth would be a convolution of this three different elements, and

studying the series alone does not allow to distinguish among the different components.8

2.2 Origins and Interpretation of Aggregate Consumption Fluc-

tuations

According to the life cycle-permanent income hypothesis (PIH), individuals set consumption

at any point in time according to their long-run productivity estimate. Instead, I document

that current aggregate consumption temporarily deviates from the trend in real GDP. These

deviations are stationary, but persistent and predictable. These findings suggest the following

general representation:

ct = EI
t [yt+∞] (5)

= Et [yt+∞] + cgapt

Et [yt+∞] = µ+ Et−1 [yt+∞] + ηt

cgapt = ρ · cgapt−1 + εt

where yt is log real GDP, Et [yt+∞] ≡ limj→∞ Et [yt+j − jµ], ρ ∈ [0, 1], and εt is i.i.d. with

zero mean and variance σ2
ε . Aggregate consumption expenditures ct equals aggregate indi-

8An alternative approach is to use some filtering procedure for consumption growth to extract different
components; see, e.g., Ortu, Tamoni, and Tebaldi (2013); Schorfheide, Song, and Yaron (2018); Bandi,
Perron, Tamoni, and Tebaldi (2019).
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viduals’ productivity expectations EI
t [yt+∞]. Unlike the standard PIH, these productivity

expectations contain both a permanent component, Et [yt+∞]—as predicted by the rational

expectations framework—, and a novel temporary component, cgapt.

Which theories can generate such temporary deviations of consumption from its level

warranted by productivity? One possibility is that fundamentals are observed with noise

(e.g., Lorenzoni, 2009; Blanchard, L’Huillier, and Lorenzoni, 2013; LHuillier and Yoo, 2017).

Consumers and firms receive information about the future, which can be news or noise. Ex-

post, if the information turns out to be news, the economy would adjust to a new level of

activity. If the information turns out to be just noise, the economy would return to its initial

state. Thus, this signal extraction problem with learning generates temporary aggregate

consumption fluctuations.

Also, several forms of departure from the rational expectations paradigm can lead to tem-

porary consumption fluctuations; recent work include Fuster, Hebert, and Laibson (2012);

Bidder and Dew-Becker (2016); Mian, Sufi, and Verner (2017); Bouchaud, Krueger, Landier,

and Thesmar (2019); Ilut and Valchev (2020); Angeletos and Lian (2021); Bianchi, Ilut, and

Saijo (2021); Chodorow-Reich, Guren, and McQuade (2021). In my sample, I find that the

correlation between the shock to the consumption gap εt and the shock to fundamentals

ηt is positive. This fact suggests that good (bad) news about fundamentals are associated

with more optimistic (pessimistic) long-term productivity forecasts and higher (lower) con-

sumption spending, consistent with a view of individuals having diagnostic expectations (see

Bordalo, Gennaioli, and Shleifer, 2018; Bordalo, Gennaioli, Porta, and Shleifer, 2019).9

How to interpret the documented consumption fluctuations? Specification (5) suggests

9Several other situations can lead to consumption temporarily deviating from its long-term path, includ-
ing binding liquidity constraints, hand-to-mouth consumption, and credit supply expansion. Identifying the
exact source of consumption fluctuations is beyond the scope of this paper.
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that the consumption gap represents deviations of aggregate households’ consumption spend-

ing from its permanent path. I find that the consumption gap exhibits positive and signifi-

cant correlation with measures of consumer sentiment. Indeed, periods in which individuals

on average over(under)–estimate their productivity expectation path and decide to consume

more (less) coincide with periods of high (low) sentiment. Figure 2 overlays the consumption

gap (blue line) with two survey measures of consumer sentiment: the University of Michigan

Consumer Sentiment Index and the Conference Board Consumer Confidence Index.10 The

three series show an equivalent pattern: They fall during economic contractions and they

rise at the onset of economic expansions, reaching their peaks just before recessions.

Regardless of their origins or interpretation, aggregate fluctuations in consumer spending

appear to generate business cycles in the data (e.g., Lorenzoni, 2009; Ilut and Schneider,

2014; Mian and Sufi, 2014; Angeletos and Lian, 2021). From an asset pricing perspective,

business cycle fluctuations can contain systematic economic information relevant for long-

term investors (Cochrane, 2005). The following Section investigates how the consumption

gap relates to the time series and the cross-section of returns.

2.2.1 Permanent vs Current Levels to Identify Consumption Fluctuations?

In their seminal paper, Lettau and Ludvigson (2001a) introduce a novel market return pre-

dictor cay, computed as the cointegrated residual of a regression of consumption c on asset

holdings a and labor income y. The predictor cay is a proxy for the consumption-to-wealth

ratio and follows from the log-linearization of the intertemporal budget constraint. To see

10Consumer sentiment data can be found at http://www.sca.isr.umich.edu/ and https://

conference-board.org/data/consumerconfidence.cfm.
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how the predictor cgap is different from cay, consider the following specification:

ct = Et [yt+∞] + cgapt (6)

wt = Et [wt+∞] + xwt

where wt is log aggregate wealth computed from asset holdings and labor income as in Lettau

and Ludvigson (2001a), Et [wt+∞] ≡ limj→∞ Et [wt+j − jµw] is the permanent component in

wealth, which follows an I(1) process, and xwt is the temporary, stationary component of

wealth.11

Using wt instead of its permanent level to compute consumption fluctuations smooths

away part of the fluctuations in consumption. Indeed, consumption and wealth are largely

exposed to the same permanent shocks: the permanent components of the two series have

a correlation of 99%. Hence, ct − wt ≈ cgapt − xwt , which means that the consumption-

to-wealth ratio as proxied by cay does not contain the same information contained in the

cgap.12 Specifically, part of the consumption fluctuations captured by the consumption gap

are eliminated by temporary fluctuations in wealth.

Finally, notice that cay should predict returns with a positive sign, whereas cgap with

a negative sign. The classical explanation for the positive relation between cay and future

returns, motivated by the intertemporal budget constraint, is that rational, forward–looking

individuals will consume little today relative to their wealth if they expect future returns to

be low. I.e., when cay is low, wealth is temporarily high, and future expected returns are

low.13 Differently, when cgap is low, consumption is temporarily low, and future expected

11Using the estimates and the data provided on Martin Lettau’s website, I compute wealth as wt =
−0.441 + 0.218 · at + 0.801 · yt.

12I use the linear projection method of Hamilton (2018) to calculate the permanent wealth component.
13Brennan and Xia (2005) find that replacing consumption with calendar time in the Lettau and Lud-
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returns are high.

I document that the consumption gap subsumes the predictive power of other macro-

based predictors, including cay. This finding suggests that using the permanent level in

productivity to extract temporary fluctuations in consumption delivers a variable which is

more informative for conditional asset pricing than a variable constructed using current

levels.

3 Empirical Investigation

For the main empirical analysis, I focus on U.S. data–NYSE, AMEX, and Nasdaq stocks

from the Center for Research in Security Prices (CRSP) and Compustat data required for

sorting – for the sample 1967–2020. I use mostly quarterly observations, but I also provide

results for annual frequencies. More information on additional data used in the empirical

analysis can be found in Appendix A.

3.1 Time Series Analysis

3.1.1 Consumption Growth, its Components, and the Stock Market

I start by investigating the relationship between aggregate stock market returns and different

components of consumption. The goal of this exercise is to understand which component(-

s) of consumption relates to the time series of returns. To this end, I use the following

vigson (2001a)’s cointegrating regression leads to a predictor—tay—with similar predictive ability for the
stock market when compared to cay. This result suggests that it is the wealth component that is driving
predictability rather than temporary consumption fluctuations.
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consumption growth decomposition:14

∆ct = µ+ (ρ− 1)cgapt−1 + ηt + εt ,

in which ηt and εt are, respectively, the shock to the stochastic trend in real GDP and the

shock to the cgap, and cgap is the consumption gap computed as in equation (3).

Table 1 reports the results from regressing log excess market returns on log consumption

growth or its components. Column (1) shows that, when using aggregate log consumption

growth, the coefficient is not significantly different from zero and the proportion of market

returns variation explained by consumption growth is zero. This result confirms the well-

known missing empirical link between the stock market and consumption discussed in the

literature, i.e., the “consumption disconnect” puzzle.

However, when I substitute aggregate consumption growth for its components, I find that

the consumption gap is significantly related the the stock market. Specifically, Column (5) in

Table 1 shows that the cgap is the only component of consumption that relates to aggregate

stock market returns. Indeed, neither the permanent shock ηt nor the temporary shock εt

significantly relate to aggregate market returns.15

Notice that the consumption gap is inversely related to future stock returns. In my

sample, a drop in current consumption below its trend of 1% implies an increase in expected

market excess return over the next quarter of about 0.9%. The intuition is that a drop

in consumption below its trend coincides to periods in which marginal utility is high and

investors ask for a larger compensation for bearing market risk, thus risk premia are higher.

14This decomposition is derived in Appendix C.2.
15Appendix Table D.3 shows a similar exercise for the short-term rate. In this case, I find that the

consumption gap and the permanent shock relate to the short-term rate.
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Appendix Table D.2 shows similar results in the case of annual returns.

3.1.2 The Consumption Gap and Stock Returns Predictability

I investigate the ability of the consumption gap to predict returns by running the predictive

regression:

rm,t+i = γ0 + γ1cgapt + εt+i , (7)

where rm,t+i is the log market return in excess of the risk-free rate compounded between t

and t+ i and cgap is the consumption gap.

Table 2 reports results for the predictive regression (7) for different i.16 Panel A shows

the in-sample results. I find that the consumption gap significantly forecasts the aggregate

stock market, with an R2 ranging from 3.9% for quarterly returns up to 12.1% for annual

returns. The last row in Table 2 shows that return predictability implied by the consumption

gap is economically large: The regression implies that expected returns on the market vary

by more than their unconditional level. I confirm the prediction γ1 < 0 for every aggregation

horizon.

Figure 3 shows the in-sample R2 for the predictable regression (7) for i = {1, 2, . . . , 40}.

The R2 from this predictive regression displays the hump-shaped pattern also documented

in Bandi, Perron, Tamoni, and Tebaldi (2019). Predictability is increasing as a function of

the aggregation horizon, with the R2 reaching its maximum and stabilizing after 4 years,

and then declining after the 8 years.

Then, I test the ability of the consumption gap to predict the equity risk premium out-of-

16For i > 1, to account for potential inference issues related to overlapping observations, I follow Ang and
Bekaert (2007) and rely on conservative standard errors from reverse regressions as proposed by Hodrick
(1992).
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sample (OOS). The out-of-sample exercise is particularly important because of two reasons.

First, the consumption gap is a stationary but persistent variable which can generate spurious

results. Second, if the consumption gap would not perform well OOS, it would be of little

use to long-term investors who want to time the market.

I test for out-of-sample predictability using the metric introduced by Campbell and

Thompson (2008). Specifically, I compute the R2
OOS

R2
OOS = 1−

T∑
t=1

(rm,t+i − r̂m,t+i)2

T∑
t=1

(rm,t+i − r̄m,t+i)2

where r̂m,t+i is the fitted value from my predictive regression estimated through period t− 1

and r̄m,t+i is the historical average return estimated thorough period t − 1. If the R2
OOS is

positive, then the predictive regression has lower average mean squared prediction error than

the historical average return.

Panel B in Table 2 shows the out-of-sample results. I find that the consumption gap sig-

nificantly predicts expected excess market returns for different aggregation horizons ranging

from one quarter to ten years. This result is not associated to any particular sample, as the

R2
OOS is positive and significant regardless the OOS period starts in 1990, 2000, or 2010.

This finding addresses the concern of Welch and Goyal (2008), who find that most of the

traditional equity premium predictors display a negative R2
OOS.

Furthermore, as consumption and potential output data for quarter t are available in the

middle of quarter t+ 1, I replicate the results documented in Table 2 using the second lag of

cgap when predicting stock returns. That is, stock return forecasts at time t+ i are based on
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the consumption gap in time t− 1. Appendix Table D.1 reports results for these predictive

regressions. Both the in-sample and out-of-sample analyses deliver identical conclusions

when compared with results reported in Table 2, suggesting that the lag in releasing the

macroeconomic data is not driving the documented predictability.

Vintage Data. As consumption data feature measurement errors and are revised and

potential output is a latent process that needs to be estimated, a natural question is whether

using only data available in real-time for these series would affect the forecasting performance

of the consumption gap. To address this issue, I use vintage data for aggregate consumption

expenditures on non-durables and services and potential output from the real-time economic

data archive at the St. Louis Fed’s Economic Research Division.17

Vintage data for consumption are available from 1959Q1, while data for potential output

are available starting from 1997Q1. I start by computing the consumption gap as in equation

(3) using only vintage data in the sample period 1997Q1 to 2020Q4. Then, I run both the

in-sample and out-of-sample analysis using the “vintage” version of the consumption gap

cgapvintage. Also, to ensure that results are immune to look-ahead bias, I use the second lag

of the vintage consumption gap when forecasting returns.

Table 3 shows OLS estimates and the R2 from the predictive regressions. Panel A re-

ports the in-sample results, while Panel B reports results for the out-of-sample forecasting

regressions. A few comments are in order. First, the coefficients on the consumption gap are

negative for different aggregation horizons, confirming the economic mechanism behind the

predictability generated by the consumption gap. Furthermore, all t−stats are above 2.7,

showing that also using only vintage data the predictability documented using revised data

17Data are available at https://alfred.stlouisfed.org.
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holds. Second, the in-sample predictive R2 ranges from 6% at quarterly frequency to almost

20% at annual frequency. These values are higher than the R2 obtained using revised data

both over the entire sample and over the same sample, consistent with Borup and Schütte

(2021) who find that unrevised macroeconomic data are more informative for asset pricing

than final releases. Finally, Panel B shows the out-of-sample results and documents that the

forecasts of market returns based on the consumption gap are more accurate than forecasts

based on the historical mean. This result holds for different aggregation horizons and two

different samples.

Overall, these findings suggest that using the consumption gap to predict the market is

particularly valuable when using only data known to investors at the time the forecasts are

made.

Horse Race Against Other Market Predictors. Is the informative predictability con-

tent of the consumption gap subsumed by other market return predictors? Table 4 ad-

dresses this question. Panel A reports an horse race of cgap against four alternative single

return-predictors: the (repurchased-adjusted) dividend-price ratio, long-term Treasury bond

returns, CPI inflation, and the investment-to-capital ratio (Cochrane, 1991). These four

predictors are the only predictors out of the fifteen variables originally considered by Welch

and Goyal (2008) plus the price-to-output ratio (Rangvid, 2006) and the repurchase-adjusted

dividend-price ratio constructed in Nagel and Xu (2021) that significantly predict the stock

market in my sample.18

Columns (1) to (4) display the in-sample predictability for the four regressors individually.

Market returns are predictable, with an R2 ranging from 1.4% to 2.6% for quarterly data.

18I am very grateful to Zhengyang Xu for sharing his data.
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In Column (5) to (8), I include the consumption gap as an additional predictor. The cgap is

always statistically significant at 5% level of confidence. Also, controlling for the consumption

gap, the evidence of predictability for the other predictors is weak.

Table 4 Panel B reports results for several well-known consumption-based predictors: cay

(Lettau and Ludvigson, 2001a), surplus-to-consumption ratio (s) calculated as in Wachter

(2006), long-run consumption (x) calculated as in Bansal, Kiku, and Yaron (2010), and

cyclical consumption (cc) calculated as in Atanasov, Møller, and Priestley (2020). For the

individual variables, predictability is significant only for the surplus-to-consumption ratio,

with an R2 of 2.2%, and for cyclical consumption, with an R2 of 2.4%. In Column (5) to (8),

I include cgap. Controlling for the consumption gap, there is not evidence of predictability

for the other consumption-based predictors. Appendix Table F.1 reports results for the same

analysis in case of annual returns and shows equivalent conclusions.

Furthermore, Appendix Table F.3 investigates the predictability of the consumer sen-

timent measures displayed in Figure 2; in Appendix Table F.4, I use as controls for the

predictive regressions the first five principal components (PCs) extracted from a large cross-

section of macroeconomic variables derived in Ludvigson and Ng (2009). The consumption

gap appears as the most relevant single predictor for market returns.

Overall, these results show that the informative content of the consumption gap broadly

subsumes the predictability of other macro-based single-return predictors.

Output Gap and Consumption Gap. Cooper and Priestley (2009) find that the output

gap—a key production-based macro variable—predicts returns. The consumption gap is one

of the components of the output gap. To see this, consider the national income identity

Y = C + I + G + NX, where Y is total GDP, C is total consumption, I is gross private
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domestic investment, G is government expenditures, and NX is net exports of goods and

services (all in real terms). Assuming a closed economy, ignoring expenditures for durable

goods, and dividing both sides of the national income identity by potential output Y POT

leads to ygap ≈ cgap + igap + ggap, where ygap = log(Y/Y POT ) is the output gap,

igap = log(I/Y POT ), and ggap = log(G/Y POT ).

Appendix Table F.2 reports results for the market predictive regression in which I consider

the various components of the national income identity as predictors. This Table shows that

the consumption gap is the only component of the output gap that predicts stock returns.

Predicting Factors Beyond the Market. I ask whether the consumption gap predicts

also other sources of systematic risk. Appendix Table F.5 reports results for the predictive

regression

fn,t+1 = γn,0 + γn,1cgapt + εn,t+1 ,

where fn,t+1 is the log factor return for factor n in the period t : t+1. Panel A reports results

for the four (five minus the market portfolio) factors proposed by Fama and French (2015).

Among size, value, investment, and profitability factors, the consumption gap significantly

predicts only the value factor HML, delivering an R2 of 1.3% using quarterly data. Panel

B reports results for the four (five minus the market portfolio) q-factors proposed by Hou,

Xue, and Zhang (2015); Hou, Mo, Xue, and Zhang (2018). I find that the cgap significantly

forecasts the investment, ROE, and expected growth factors, with the R2 ranging from 2%

to 6.6%. Panel C and D shows that the consumption gap significantly predicts both the two

mispricing factors proposed by Stambaugh and Yuan (2016) and the two behavioral factors

proposed by Daniel, Hirshleifer, and Sun (2020).

These results suggest that the consumption gap is not just related to the market portfo-
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lio. Rather, it carries economically relevant information, thus predicting several systematic

sources of risk.

Dissecting Predictability. To investigate whether the consumption gap carries any in-

formation related to asset-specific risk, I consider a predictive regression in which I forecast

only the idiosyncratic return component. I use the 10 Portfolios sorted on Book-to-Market

as test assets. To compute the idiosyncratic return component, I orthogonalize each as-

set i returns with respect to the market portfolio. Specifically, I first run the regression

rn,t+1 = αn,0 +βn,1rm,t+i + vn,t+1 where rn,t+1 is the excess return for asset n and rm,t+i is the

log market excess return. Then, I compute the idiosyncratic component as rIn,t+i = v̂n,t+1.
19

Appendix Table F.6 reports results for the predictive regression:

rIn,t+i = γn,0 + γn,1cgapt + εn,t+i .

Panel A reports results for quarterly returns. I do not find any predictability for the idiosyn-

cratic component of returns using the consumption gap. Panel B reports identical results

for annual returns.20

3.1.3 The Economic Value of Market Timing

I investigate the economic value of timing the market for an investor using the consumption

gap. Specifically, I consider a mean-variance investor who faces the following objective

19Appendix Figure F.1 shows actual and fitted values for Growth (decile 1) and Value (decile 10) annual
returns in the 10 Portfolios sorted on Book-to-Market using the consumption gap. Across the 10 Portfolios
I find an R2 of 2.6% and 8.5% respectively for quarterly and annual returns.

20My analysis is complementary to Favero, Melone, and Tamoni (2021) who find that the cointegrat-
ing relationship between portfolio prices and factor prices predicts the idiosyncratic component of returns.
Differently, I show that temporary consumption deviations predict the systematic component of returns.
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function at the end of quarter t:

arg max
wt+1|t

Et [Rp,t+1]− 0.5γVar (Rp,t+1)

where Rp,t+1 = wt+1|trm,t+1, wt+1|t is the allocation to the market portfolio in period t + 1

given its forecast at time t, and γ represents the coefficient of relative risk aversion. Following,

e.g., Rapach, Strauss, and Zhou (2010), I set γ = 3. Given the optimal portfolio weights,

the average utility realized by the investor is given by

U j = Rp,t+1 − 0.5γV̂ar (Rp,t+1) , for j = 0, 1,

where a subscript of 0 or 1 indicates the mean and variance for the portfolio return when

the investor uses, respectively, the prevailing mean or the consumption gap to predict rm,t+1.

In the case j = 1, optimal portfolio weights are a linear function of the state variable cgap

(e.g., Campbell and Viceira, 1999; Brandt and Santa-Clara, 2006). Finally, I compute the

average utility gain (or increase in certainty equivalent return) when the investor uses the

competing forecast in lieu of the prevailing mean benchmark as ∆U = U1 − U0.

The average utility gain has the same unit of measure as returns and, multiplied by four,

can be interpreted as the annualized portfolio management fee (as a proportion of wealth)

that the investor would be willing to pay to have access to the information in the competing

forecast relative to that in the prevailing mean benchmark. I find that the annualized utility

gain reaches 2.39% for the market timing, which is higher than the 2% threshold for economic

significance introduced by Pástor and Stambaugh (2000).21

21Using the vintage version of the consumption gap cgapvintage leads to an annualized certainty equivalent
return of 5.78%.
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Such a market timing strategy generates an annualized performance of 7.56% with a

t−stat of 3.6. Furthermore, this performance cannot be explained by the performance of

several systematic factors. Table 5 reports results for the regression

MT cgapt = α + βXt + εt ,

where MT cgapt is the performance resulting from the market timing strategy which uses the

consumption gap to predict the market and Xt is a matrix containing factor returns for

different characteristics-based factor models. Specifically, I consider the CAPM, (Fama and

French, 1993) three-factor model (FF3), the Carhart (1997) four-factor model, the (Fama

and French, 2015) five-factor model (FF5), the five-factor model proposed by (Hou, Xue,

and Zhang, 2015; Hou et al., 2018), the Stambaugh and Yuan (2016) mispricing four-factor

model, the Daniel, Hirshleifer, and Sun (2020) behavioral three-factor model, and the CAPM

plus “betting against the beta” (BAB) factor proposed by Frazzini and Pedersen (2014). I

find that the market timing strategy which uses the cgap to predict the market generates a

positive and significant alpha which ranges between 0.87 to 1.61% per year across different

factor models.

Finally, I also compare the performance of the market timing strategy using the cgap

with the one using cay (Lettau and Ludvigson, 2001a) as a return predictor. A regression

of returns resulting from the cgap-strategy on returns from the cay-strategy delivers an

annualized alpha of 3.28% with a t−stat of 2.1 and an associated Sharpe ratio which is 58%

higher than the Sharpe ratio of the market timing strategy in which one would use cay to

predict the market.
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3.2 Cross-Sectional Analysis

Macro-finance models can be represented via a stochastic discount factor (SDF) which is

linear in the factors that span the mean-variance frontier (Hansen and Jagannathan, 1991).

A general SDF representation for the CAPM is:

mt+1 = 1− b′t(Rm,t+1 − Et[Rm,t+1]) , (8)

where Rm,t+1 is the excess market return at time t + 1. In the absence of arbitrage, the

SDF in equation (8) satisfies the fundamental pricing equation 0 = Et[mt+1Ri,t+1] for any

excess asset return Ri,t+1. bt represents the SDF loadings and can be interpreted as the

time-varying price of risk on the market portfolio.22

This model implies the familiar expected return-beta representation:

Et[Ri,t+1] = βi,tλm,t (9)

where λm,t = Et[Rm,t+1] = btVart[Rm,t+1] is the time-varying market risk premium. This

specification represents a conditional version of the CAPM (Hansen and Richard, 1987).

The conditional CAPM in equation (9) is a dynamic single-factor model with the market

portfolio as the only fundamental factor.

Next, I estimate a conditional version of the CAPM (8) using the consumption gap

as conditioning variable. Then, I study the properties of the implied empirical stochastic

discount factor (SDF).

22In consumption-based macro-finance models in which consumption growth is the risk factor, bt represents
aggregate risk aversion (e.g., Campbell and Cochrane, 1999). Recent empirical work on time-varying risk
aversion include Guiso, Sapienza, and Zingales (2018) and Bekaert, Engstrom, and Xu (2021).
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3.2.1 Pricing Tests

Consider the conditional CAPM in equation (9). To test this, following, e.g., Jagannathan

and Wang (1996), I parameterize the conditional model assuming that the time-varying

coefficients are a linear function of the consumption gap. This characterization allows to

specify the conditional model (9) as

Et[Ri,t+1] = β0,iEt[Rm,t+1] + β1,iEt[cgaptRm,t+1]

and taking unconditional expectations

E[Ri,t+1] = β0,iλ0 + β1,iλ1 , (10)

where λ0 = E[Rm,t+1] and λ1 = E[cgaptRm,t+1]. This is a multifactor unconditional model

in which the factors are the excess market return and the excess market return scaled by

the consumption gap. The market portfolio is the only fundamental factor. The scaled

excess market can be interpreted as a managed portfolio which invests more aggressively

in the market when the consumption gap is high. Since the consumption gap negatively

predicts the stock market, the risk premium associated with this managed portfolio should

be negative (Maio and Santa-Clara, 2012; Boons, 2016).

Finally, I can use standard methods to estimate the system of equations

mt+1 = 1− b′Ft+1 (11)

0 = E[Ri,t+1mt+1] ,
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where Ft+1 = {Rm,t+1, cgaptRm,t+1}, b = {b0, b1}, and Ri,t is the excess return of asset i at

time t. Once I estimate b using the system of equation (11), I can compute the lambdas

in equation (10) as E[F ′tFt]b. Following, e.g., Parker and Julliard (2005) and Lettau and

Ludvigson (2001b), I estimate the system of equations (11) via the Generalized Method of

Moments (GMM). This estimation methodology allows to correct for autocorrelation and

heteroskedasticity as well as for pricing errors correlation across assets. I use a two-step

procedure. In the first step, I set the weighting matrix for the moment conditions equal to

the identity matrix. In the second step, I use the optimal weighting matrix from the first

step. I compute robust standard errors as in Newey and West (1987).

Table 6 reports estimates of lambdas and SDF coefficients for several test assets, to-

gether with cross-sectional R2. Test assets are the 25 double-sorted portfolios formed on

book-to-market (B/M), market capitalization (Size), investments (Inv), long-term reversal

(LT Rev), operating profitability (Op); the 32 triple-sorted portfolios formed on book-to-

market, market capitalization, and investments; the 90 (dec 10 and dec 1) anomaly portfolios

constructed in Kelly, Kozak, and Giglio (2020), Haddad, Kozak, and Santosh (2020), and

Kozak, Nagel, and Santosh (2020).23,24 I convert the returns for each test assets to quarterly

returns in excess of the risk-free rate for the sample period 1967Q1 to 2020Q4, that is, 216

observations.

The first row shows results for the 25 Portfolio formed on Size and B/M.25 Both lambdas

23Data as well as a detailed description for the construction of the double- and triple-sorted portfolios
are available at Kenneth French’s website http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html. Appendix A.2 provides details for the larger-cross section of anomaly portfolios.

24I consider only decile 1 and decile 10 for each of the 45 anomalies as it allows to retain the most important
information for each characteristic (the long and the short portfolios) in a parsimonious way. Indeed, as I
use a two-step GMM estimation, I need the time series sample to be larger than the cross-sectional sample
size (see, e.g., Ferson and Foerster, 1994; Lettau and Ludvigson, 2001b).

25I report results for a general data generating process Ri,t+1 = αi,t + βi,tRm,t+1, in which both alphas
and betas are time-varying and can be specified as a linear function of the consumption gap. However,
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and SDF sensitivities are significant and with the correct sign. The market portfolio is

priced; the scaled market portfolio is associated with a negative lambda and a negative SDF

coefficient. This is consistent with the fact that a positive consumption gap signals low

future consumption growth (see equation (4)) and is associated to high marginal utility and

low expected returns. Thus, b1 should be negative (e.g., Barroso, Boons, and Karehnke,

2021). Results are consistent and robust across the different test assets, including the large

cross-section of single-sorted anomaly portfolios.

The last two columns of Table 6 report, for each test assets, the improvement in GLS R2

(Lewellen, Nagel, and Shanken, 2010) with respect to the CAPM (GLS R2+ CAPM) or the

conditional CAPM of Lettau and Ludvigson (2001a) in which cay is used as scaling variable

rather than cgap (GLS R2+ LL). For the 25 Portfolio formed on Size and B/M, using the

consumption gap as a conditioning variable leads to an improvement in the cross-sectional

R2 of about 14% with respect to the unconditional CAPM and of about 8% with respect to

the conditional CAPM of Lettau and Ludvigson (2001b). I get similar results for other test

assets.

Overall, these results suggest that the consumption gap significantly relates to time-

variation in the SDF exposure to the market portfolio, i.e., it tracks the price of market risk.

Furthermore, the conditional version of the CAPM in which I use the consumption gap as

a conditioning variable shows a significant ability at explaining cross-sectional variation in

betas across different test assets when benchmarked against the CAPM and its conditional

version proposed by Lettau and Ludvigson (2001b).

assuming that only the betas are time-varying would deliver similar results.
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3.2.2 Properties of the SDF and Economic Conditions

Estimating the system of equations (11) enables to compute the stochastic discount factor

(SDF) implied by the empirical equilibrium model (10) and investigate its properties.

Given the estimates reported in Table 6, I calibrate b0 = 0.025 and b1 = −0.013. Thus, I

calculate the empirical SDF as: mt+1 = 1− 0.025× Rm,t+1 + 0.013× cgaptRm,t+1. Figure 4

shows the conditional variance for the SDF calculated using a standard GARCH(1, 1). The

average annualized conditional variance of the SDF is 0.90.26 Its yearly autocorrelation is

0.93 reflecting slow, long-term changes in economic conditions.

This empirical SDF has similar properties as theoretical counterparts in leading macro-

finance models. For example, Bansal and Yaron (2004) report an annualized conditional

variance of 0.85. Moreover, the variance of the SDF fluctuates substantially over time in

a way consistent with, e.g., habit (e.g., Campbell and Cochrane, 1999) and heterogeneous

agents models (e.g., Chan and Kogan, 2002). The SDF variance is related to the state of the

business cycle. In Appendix Figure D.1, I plot the cross-correlogram between the variance

of the SDF and the credit spread index introduced by Gilchrist and Zakraǰsek (2012). The

Gilchrist-Zakrajsek spread (GZ) is constructed using prices of individual corporate bonds

traded in the secondary market and is a powerful predictor of economic activity. I compute

the cross-correlation as ρm,GZ = corr(σSDFt , GZt−i), where σSDFt is the variance of the SDF

at time t and GZt−i is the GZ spread at time t − i. The cross-correlogram shows that, for

i = {0, . . . , 4}, the correlation between the two variables takes values ranging between 45%

and 51%, consistent with the idea that the GZ spread leads the SDF over the business cycle.

26These results are not driven by the recent spike in the SDF variance due to the COVID-19 pandemic.
Indeed, excluding 2020, the average annualized conditional variance of the SDF is 0.87.
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Furthermore, the large spikes in the SDF in Figure 4 coincide with periods of intense

economic and financial stress—the 1970s energy crisis, the early 1980s recession, the Dot-

com bubble, the Great Financial Crisis 2007–2009, and the COVID-19 pandemic. This fact

suggests that the empirical SDF well-captures how the price of risk changes over the business

cycle: When marginal utility is more volatile, investors ask higher compensation for bearing

risks.

3.3 Robustness

3.3.1 Alternative Permanent Component Measures

The forecasting ability of the consumption gap could be related to the way the CBO potential

output is constructed. To address this issue, I run both in-sample and out-of-sample anal-

ysis for three alternative measures of the permanent component used to de-trend aggregate

consumption expenditures.

First, I use a simple quadratic regression to compute the trend in real GDP. Specifically,

I follow, e.g., Clarida, Gali, and Gertler (2000); Cooper and Priestley (2009), and compute

the trend in real GDP as the fitted value from the regression yt = π0 + π1t + π2t
2 + εt,

where yt is real GDP at time t. Then, I compute the consumption gap subtracting the new

estimate for the trend in real GDP from current consumption expenditures. Appendix Table

F.7 reports results for the predictive regressions for the market. Panel A reports in-sample

results. The coefficients on the consumption gap calculated using the alternative real GDP

trend estimate are significant and negative. The R2 from the regressions ranges between

4.8% (quarterly returns) to about 15% (annual returns). Panel B reports out-of-sample R2,

which is positive for different aggregation horizons and across different sample periods.
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Second, I follow Laubach and Williams (2003) and compute the stochastic trend in real

GDP using a Kalman filter methodology. Specifically, I compute the consumption gap sub-

tracting the estimate for potential output produced using the Kalman filter from current

consumption expenditures. Appendix Table F.8 reports results for predicting the market

using the newly obtained consumption gap. Panel A reports in-sample results. The coef-

ficients on the consumption gap computed using the alternative potential output estimate

are significant and negative. The R2 from the regressions ranges between 2.3% (quarterly

returns) to about 9% (annual returns). Panel B reports out-of-sample R2, which is positive

for different aggregation horizons up to 40 quarters and across different sample periods.

As a last alternative measure for the permanent component, I follow the original formu-

lation of the PIH of Friedman (1957) and employ real disposable income instead of real GDP

in equation (1). I compute the permanent component in income using the linear projection

method proposed by Hamilton (2018), which avoids potential spurious dynamics introduced

by HP filtering. Specifically, the trend in real disposable income x is the fitted value from the

regression: xt = a0+a1xt−k+a2xt−k−1+a3xt−k−2+a1xt−k−3+vt; following Atanasov, Møller,

and Priestley (2020), I use k = 24. Finally, I compute temporary consumption deviations cx

as the difference between current consumption c and permanent income x. Appendix Table

F.9 reports results for the predictive regression rm,t+i = γ0 + γ1cxt + εt+i, where rm,t+i is the

log market return in excess of the risk-free rate compounded in the period t : t+ i. Panel A

reports in-sample predictability results, while Panel B reports results for the out-of-sample

analysis. These findings are qualitatively and quantitatively similar to the results reported

in Table 2, suggesting that the main findings are robust to different specification for the

trend component.
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3.3.2 A Reduced-Form VAR Approach

I use a Vector Autoregressive Model (VAR) to (a) assess the predictive power of the con-

sumption gap for market returns controlling for the dynamic interactions of market returns

and consumption growth; (b) investigate both the short- and the long-run effects of the

consumption gap on market returns. Specifically, I fit the following reduced-form VAR:

Yt = C +BYt−1 + ζ (12)

where Yt = [rm,t,∆ct, cgapt], C is a vector of constants, B is a matrix containing the exposure

of each variable to lagged values of all the variables, and ζ is a vector of shocks. Appendix

Table E.1 reports OLS estimates and the R2 for the VAR specified in equation (12). Column

(1) reports the central resul the consumption gap negatively predicts aggregate stock returns,

even after controlling for past returns and consumption growth. Column (2) shows that the

stock market together with consumption growth predict future consumption growth. Column

(3) shows that all the variables contribute at predicting the consumption gap.

The VAR allows to assess the response of stock market returns caused by a shock to any

of the predictors. To this end, Appendix Figure E.1 shows the impulse response functions

(IRF) for the estimated VAR. Panel (a) and Panel (b) shows similar results: one positive

standard deviation of, respectively, market returns or consumption growth has no effect

on future market returns. Differently, Panel (c) shows that a consumption gap shock is

associated with a statistically significant reduction in future market returns, consistent with

the evidence reported above.

Finally, I study the long-run effect of a positive consumption gap shock on market returns
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Appendix Figure E.2 shows the cumulative effect of a one positive standard deviation con-

sumption gap shock. The VAR model produces a significant economic role for consumption

gap shocks over the long-run, whit a point estimate of the change in expected five-year ahead

returns of more than 10%.

Overall, the VAR approach delivers results comparable with the ones from OLS regres-

sions, supporting the robustness of those empirical findings.

3.3.3 International Evidence

I use international data from the OECD, IMF, and World Bank database, together with

stock market data from Compustat/XpressFeed Global database to investigate predictability

implied by the consumption gap for Canada and the UK.27 Appendix Table G.1 reports

results for the predictive regression ri,t+1 = α+ βcgapit + εt+1, where ri,t+1 is the log market

return of country i at time t+ 1 and cgapi is the consumption gap of country i computed as

in equation (3) (but using macro-data for the respective country). For both countries, CAN

and GBR, I find that the consumption gap significantly relate to future expected market

returns, delivering an R2 greater than 1% using quarterly data. Furthermore, the coefficient

on the consumption gap is negative, supporting the economic mechanism which generates

predictability. I also control for the US consumption gap and I find that it has no role at

predicting cross-country market returns.

27Further details on data are reported in Appendix A.3.
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4 A Structural Interpretation

My empirical findings suggest that the market price of risk varies over time and that it is

inversely related to the consumption gap.

Several equilibrium theories can generate a time-varying price of risk through various eco-

nomic mechanisms, including “catching up with the Joneses” utility functions (e.g., Campbell

and Cochrane, 1999; Chan and Kogan, 2002), overlapping generation model with heteroge-

neous agents (Gârleanu and Panageas, 2015), or intermediary constraints (He and Krishna-

murthy, 2013).

Given the interpretation of the consumption gap as temporary deviations of current

consumption from aggregate productivity expectations, I focus on a simplified version of

the model proposed by Bhamra and Uppal (2014), which is flexible enough to allow for

heterogeneity in beliefs. This specification is also consistent with the growing empirical

literature documenting pervasive heterogeneity in beliefs (e.g., Manski, 2018; Baker, McElroy,

and Sheng, 2020; Das, Kuhnen, and Nagel, 2020; Giglio, Maggiori, Stroebel, and Utkus,

2021).

Bhamra and Uppal (2014) consider a continuous-time, pure-exchange economy; finan-

cial markets are complete and the time horizon is infinite. There is a unique non-storable

consumption good that serves as the numeraire. The stochastic endowment process Yt is

exogenous. There are two types of agents k ∈ {1, 2} who may not have correct beliefs about

the aggregate endowment process. Beliefs between the two agents can be different. Agents

have power utility over consumption Ck with external habit Hk. Agent k maximizes expected
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lifetime utility

Vk,t = Ek
t

[∫ ∞
t

e−βk(u−t)
1

1− γ

(
Ck,u
Hk,u

)1−γ

du

]
,

where βk is the constant subjective discount rate, γ is the coefficient of relative risk aversion,

and Ek
t is the conditional expectation at time t under belief k, subject to the static budget

constraint

Ek
0

[∫ ∞
0

πk,t
πk,0

Ck,tdt

]
≤ Wk,0 ,

where Wk,0 is her initial wealth. The equilibrium consumption-sharing rule is given by the

first-order condition for optimal consumption for the central planners problem. The true

dynamics for the aggregate endowment are

dYt
Yt

= µY dt+ σY dZt .

However, agent k believes that the expected growth rate of the endowment process is µY,k

Aggregate beliefs about the endowment process, µ̃Y,t, are given by the consumption-share

weighted mean of individual agents’ beliefs. Finally, the evolution of the central planner’s

state-price density πt is

dπt
πt

= −rtdt− btdZt ,

where bt represents the market price of risk and is given by

bt = γσY +
µY − µ̃Y,t

σY
. (13)

Equation (13) predicts that time-variation in the market price of risk depends on whether

beliefs are more pessimistic or more optimistic on average. Specifically, when average beliefs
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are more optimistic, i.e., µY − µ̃Y,t < 0, the price of market risk is lower than when average

beliefs are more pessimistic, i.e., µY − µ̃Y,t > 0. Periods in which aggregate beliefs are

pessimistic correspond to periods in which the consumption gap is negative. The intuition

for this is that after receiving bad news about the state of the economy, agents have more

pessimistic productivity expectations on average. In this situation, current consumption

falls below the trend in real GDP, marginal utility is more volatile, and the compensation

for bearing risk is higher.

If this intuition is correct, the price of market risk should be inversely related to measures

of macroeconomic optimism. In Figure 5, I overlay the market price of risk implied by the

empirical model (10) and the macroeconomic optimism index (OPTINDX) constructed in

Das, Kuhnen, and Nagel (2020).28 Two comments are in order. First, the price of market

risk is countercyclical. This result is consistent with seminal work by Fama and French

(1989) and Ferson and Harvey (1991) who document that the market risk premium increases

during economic contractions and peaks near business cycle troughs. Furthermore, Figure 5

confirms the model prediction: more optimistic periods (e.g., during economic expansions)

coincide, on average, with periods of lower market price of risk, whereas more pessimistic

periods (e.g., recessions) coincide with periods of higher market price of risk.

5 Conclusions

In their survey, Lettau and Ludvigson (2010) discuss the puzzling disconnect between ex-

pected returns and real economic variables. This paper addresses this puzzle by documenting

28OPTINDX is an aggregate index constructed as the standardized average of several beliefs measures
from the Michigan Survey of Consumers. For details on how to construct OPTINDX see Das, Kuhnen, and
Nagel (2020).
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a novel link between return predictability and consumption expenditures.

I have started from the economic intuition that—like in the life cycle-permanent income

hypothesis (PIH)—individuals decide how much to consume according to their long-run

productivity expectations. However, differently from the standard PIH, I find that aggregate

consumption temporarily deviates from its permanent level warranted by productivity. These

transitory consumption deviations—termed the consumption gap—are consistent with a view

that individuals overreact to recent information. In this paper, I find that the consumption

gap predicts stock returns as it tracks the price of market risk over the business cycle. These

results lead to an empirical SDF that varies with the economic conditions, consistent with

benchmark macro–finance theories.

These findings challenge the traditional view that economic policies affect consumption

only as much as they affect permanent income (Hall, 1978; Cochrane, 1994). Indeed, individ-

uals’ expectations, and their volatility over time, play a central role in shaping business cycle

consumption fluctuations, which are relevant for understanding countercyclical variation in

the market price of risk.
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Tables and Figures

Table 1: Stock Market Returns and Consumption

This table reports OLS estimates and the R2 for the regression: rm,t+1 = α+ β∆ct+1 + εt+1, where rm,t+1

is the log market return in excess of the risk-free rate compounded in the period t : t + 1 and ∆c is log
consumption growth. Columns (2) to (5) substitutes log consumption growth for its different components
∆ct+1 = µ + (ρ − 1)cgapt + ηt+1 + εt+1, where η and ε are respectively the shock to the trend in real
GDP and the shock to the cgap, and cgap is the consumption gap computed as in equation (3). Values in
parenthesis are heteroskedasticity and autocorrelation consistent (HAC) standard errors using Newey and
West (1987) with automatic bandwidth selection procedure as described in Newey and West (1994). ***,
**, and * indicates respectively 1%, 5%, and 10% level of significance. Quarterly observations. The sample
period is 1967Q1 to 2020Q4.

rm,t+1

(1) (2) (3) (4) (5)

∆ct+1 0.041
(0.647)

cgapt −0.861∗∗∗ −0.990∗∗∗

(0.170) (0.240)

ηt+1 −2.850 2.697
(3.231) (3.866)

εt+1 −0.305 −0.310
(0.564) (0.729)

Constant 1.407∗ 1.401∗∗ 1.320∗∗ 1.426∗∗ 1.511∗∗∗

(0.718) (0.579) (0.582) (0.593) (0.572)

Observations 216 215 216 216 215
Adjusted R2 −0.005 0.034 −0.001 −0.004 0.028
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Table 2: Predicting Market Returns

This table reports OLS estimates and the R2 from the predictive regression: rm,t+i = γ0 + γ1cgapt + εt+i,
where rm,t+i is the log market return in excess of the risk-free rate compounded in the period t : t + i and
cgap is the consumption gap computed as in equation (3). Panel A shows the in-sample results. Panel B
shows the out-of-sample results. The R2

OOS is computed as in Campbell and Thompson (2008); p-values for
R2

OOS are computed as in Clark and West (2007). I use an expanding window for estimating the predictive
regressions; the in-sample period starts in 1967Q1 and ends in 1989Q4, 1999Q4, and 2009Q4. Values in
parenthesis are heteroskedasticity and autocorrelation consistent (HAC) standard errors using Newey and
West (1987) with automatic bandwidth selection procedure as described in Newey and West (1994); for
i = {2, 3, 4}, I use overlapping observations-corrected standard errors as in Hodrick (1992). ***, **, and *
indicates respectively 1%, 5%, and 10% level of significance. Quarterly observations. The sample period is
1967Q1 to 2020Q4.

Panel A: In-Sample

rm,t+1 rm,t+2 rm,t+3 rm,t+4

(1) (2) (3) (4)

cgapt −0.861∗∗∗ −1.689∗∗∗ −2.813∗∗∗ −3.564∗∗∗

(0.170) (0.614) (0.850) (1.034)

Constant 1.401∗∗ 2.799∗∗ 4.319∗∗ 5.641∗∗

(0.579) (1.205) (1.807) (2.408)

Observations 215 214 213 212
R2 0.039 0.069 0.097 0.121

σ[Et(rm,t+i)]/E(rm,t+i) 1.229 1.216 1.188 1.160

Panel B: Out-Of-Sample

R2
OOS From 1990 From 2000 From 2010

rm,t+1 3.14∗∗∗ 4.31∗∗∗ 8.96∗∗∗

rm,t+4 5.66∗∗∗ 10.43∗∗∗ 30.58∗∗∗

rm,t+8 14.13∗∗∗ 22.86∗∗∗ 42.15∗∗∗

rm,t+20 22.59∗∗∗ 32.22∗∗∗ 65.74∗∗∗

rm,t+40 26.90∗∗∗ 28.72∗∗∗ 47.67∗∗∗
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Table 3: Predicting Market Returns Using Vintage Data

This table reports OLS estimates and the R2 from the predictive regression: rm,t+i = γ0+γ1cgap
vintage
t−1 +εt+i,

where rm,t+i is the log market return in excess of the risk-free rate compounded in the period t : t + i and
cgapvintage is the consumption gap computed as in equation (3) using only real-time unrevised data on
consumption and potential output. Panel A shows the in-sample results. Panel B shows the out-of-sample
results. The R2

OOS is computed as in Campbell and Thompson (2008); p-values for R2
OOS are computed as in

Clark and West (2007). I use an expanding window for estimating the predictive regressions; the in-sample
period starts in 1997Q1 and ends in 2004Q4 and 2009Q4. Values in parenthesis are heteroskedasticity and
autocorrelation consistent (HAC) standard errors using Newey and West (1987) with automatic bandwidth
selection procedure as described in Newey and West (1994); for i = {2, 3, 4}, I use overlapping observations-
corrected standard errors as in Hodrick (1992). ***, **, and * indicates respectively 1%, 5%, and 10% level
of significance. Quarterly observations. The sample period is 1997Q1 to 2020Q4.

Panel A: In-Sample

rm,t+1 rm,t+2 rm,t+3 rm,t+4

(1) (2) (3) (4)

cgapvintaget−1 −0.232∗∗∗ −0.475∗∗∗ −0.647∗∗∗ −0.820∗∗∗

(0.069) (0.177) (0.242) (0.307)

Constant 1.727∗∗ 3.378∗ 4.937∗ 6.085∗

(0.805) (1.872) (2.780) (3.698)

Observations 95 94 93 92
R2 0.060 0.126 0.152 0.195

σ[Et(rm,t+i)]/E(rm,t+i) 1.287 1.429 1.497 1.424

Panel B: Out-Of-Sample

R2
OOS rm,t+1 rm,t+4 rm,t+8 rm,t+20

From 2005 5.57∗∗ 13.49∗∗∗ 30.75∗∗∗ 30.20∗∗∗

From 2010 7.46∗∗ 20.19∗∗∗ 34.49∗∗∗ 34.25∗∗∗
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Table 4: The Consumption Gap and Other Market Predictors

This table reports OLS estimates and the R2 from the predictive regression rm,t+1 = β0+β1xt+γ1cgapt+εt+1,
where rm,t+1 is the log market return in excess of the risk-free rate compounded in the period t : t+ 1, x is a
market predictor, and cgap is the consumption gap computed as in equation (3). In Columns (1) to (4) I study
the case γ1 = 0. Panel A shows results for the significant predictors among the sample of market predictors
analized in Welch and Goyal (2008): long-term Government bond returns (ltr), CPI inflation (infl), and
the investment-to-capital ratio (ik), plus the repurchase-adjusted dividend-price ratio constructed in Nagel
and Xu (2021) (adj.dpt). Panel B shows results for cay (Lettau and Ludvigson, 2001a), surplus-consumption
ratio (s) calculated as in Wachter (2006), long-run consumption (x) calculated as in Bansal, Kiku, and
Yaron (2010), and cyclical consumption (cc) calculated as in Atanasov, Møller, and Priestley (2020). Values
in parenthesis are heteroskedasticity and autocorrelation consistent (HAC) standard errors using Newey and
West (1987) with automatic bandwidth selection procedure as described in Newey and West (1994). ***,
**, and * indicates respectively 1%, 5%, and 10% level of significance. Quarterly observations. The sample
period is 1967Q1 to 2020Q4.

Panel A: Goyal-Welch (2006)

rm,t+1

(1) (2) (3) (4) (5) (6) (7) (8)

adj.dpt 0.018∗∗ 0.013
(0.009) (0.009)

ltrt 0.232∗ 0.215∗

(0.127) (0.124)

inflt −1.276∗∗ −0.834
(0.605) (0.844)

ikt −4.897∗∗∗ −2.773
(1.820) (1.974)

cgapt −0.736∗∗∗ −0.825∗∗∗ −0.754∗∗∗ −0.636∗∗∗

(0.168) (0.179) (0.202) (0.179)

Observations 215 215 215 215 215 215 215 215
Adjusted R2 0.019 0.019 0.014 0.026 0.041 0.050 0.037 0.037
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Panel B: Consumption-Based Variables

rm,t+1

(1) (2) (3) (4) (5) (6) (7) (8)

cayt 0.310 0.443
(0.289) (0.286)

st −0.720∗∗∗ −0.047
(0.246) (0.528)

xt −0.269 0.022
(0.212) (0.286)

cct −0.480∗∗∗ −0.278
(0.174) (0.201)

cgapt −0.951∗∗∗ −0.824∗ −0.875∗∗∗ −0.664∗∗∗

(0.262) (0.422) (0.259) (0.206)

Observations 215 215 215 215 215 215 215 215
Adjusted R2 0.001 0.022 0.002 0.024 0.030 0.030 0.030 0.037
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Table 5: Disconnect Between Market Timing Performance and Other Factors

This table reports the results from regressing returns resulting from the market timing strategy which uses
the consumption gap to predict the market (MT cgap) on several characteristics-based risk factors. Column
(1) is the CAPM. Column (2) is the (Fama and French, 1993) three-factor model (FF3). Column (3) is
the Carhart (1997) four-factor model. Column (4) is the (Fama and French, 2015) five-factor model (FF5).
Column (5) is the five-factor model proposed by (Hou, Xue, and Zhang, 2015; Hou et al., 2018). Column
(6) is the Stambaugh and Yuan (2016) mispricing four-factor model. Column (7) is the Daniel, Hirshleifer,
and Sun (2020) behavioral three-factor model. Column (8) is CAPM plus “betting against the beta” (BAB)
factor proposed by Frazzini and Pedersen (2014). Values in parenthesis are heteroskedasticity and autocor-
relation consistent (HAC) standard errors using Newey and West (1987) with automatic bandwidth selection
procedure as described in Newey and West (1994). ***, **, and * indicates respectively 1%, 5%, and 10%
level of significance. Quarterly observations. The sample period is 1967Q1 to 2020Q4; in Column (7), the
sample starts in 1972Q3.

(1) (2) (3) (4) (5) (6) (7) (8)

αMT cgap 1.14∗∗ 1.01∗∗ 1.11∗∗ 0.87∗ 1.55∗ 1.18∗∗ 1.61∗∗∗ 1.03∗∗

(0.48) (0.49) (0.46) (0.49) (0.85) (0.51) (0.52) (0.46)

MKT 0.14∗∗∗ 0.15∗∗∗ 0.14∗∗∗ 0.15∗∗∗ 0.14∗∗∗ 0.14∗∗∗ 0.15∗∗∗ 0.13∗∗∗

(0.04) (0.03) (0.03) (0.04) (0.03) (0.03) (0.03) (0.03)

SMB −0.01 −0.02 −0.01 −0.01
(0.02) (0.02) (0.02) (0.02)

HML 0.04∗∗ 0.04 0.01
(0.02) (0.02) (0.03)

Mom −0.01
(0.02)

RMW −0.01
(0.03)

CMA 0.07∗

(0.03)

ME −0.03
(0.02)

IA 0.06
(0.05)

ROE −0.07∗∗

(0.03)

EG −0.02
(0.04)

Mgmt 0.04∗

(0.02)

Perf −0.04∗∗∗

(0.02)

PEAD −0.08∗∗

(0.03)

FIN 0.02
(0.02)

BAB −0.00
(0.02)

Observations 215 215 215 215 215 215 194 215
Adjusted R2 0.40 0.40 0.40 0.41 0.43 0.42 0.43 0.41
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Table 6: Prices of Risk and SDF Loadings

This table reports factor risk premia and SDF coefficients for the unconditional two-factor model in equation (11). I use the
generalized method of moments (GMM) to estimate the system of equations (11). Test assets are the 25 double-sorted portfolios
formed on book-to-market (B/M), market capitalization (Size), investments (Inv), long-term reversal (LT Rev), operating profitability
(Op); the 32 triple-sorted portfolios formed on book-to-market, market capitalization, and investments; the 90 (dec 10 and dec 1)
anomaly portfolios constructed in Kelly, Kozak, and Giglio (2020), Haddad, Kozak, and Santosh (2020), and Kozak, Nagel, and
Santosh (2020). GLS R2+ CAPM and LL denote the improvement in GLS R2 with respect to the CAPM or using cay (Lettau
and Ludvigson, 2001a) rather than cgap as scaling variable. The consumption gap cgap is computed as in equation (3). Values in
parenthesis are heteroskedasticity and autocorrelation consistent (HAC) standard errors. ***, **, and * indicates respectively 1%,
5%, and 10% level of significance. Quarterly observations. The sample period is 1967Q1 to 2020Q4.

Test Assets λ0 λ1 b0 b1 GLS R2+ CAPM GLS R2+ LL

25 Portfolios Size and B/M 1.839∗∗∗ (0.635) −2.592∗∗∗ (0.978) 0.025∗∗∗ (0.008) −0.013∗∗∗ (0.005) 13.73 7.55

25 Portfolios Size and Inv 1.878∗∗∗ (0.633) −2.602∗∗∗ (0.947) 0.025∗∗∗ (0.008) −0.013∗∗∗ (0.005) 12.30 4.27

25 Portfolios Size and LT Rev 1.982∗∗∗ (0.637) −2.383∗∗ (0.948) 0.026∗∗∗ (0.009) −0.012∗∗ (0.005) 15.49 7.69

25 Portfolios B/M and Inv 1.877∗∗∗ (0.644) −2.382∗∗ (0.966) 0.025∗∗∗ (0.009) −0.012∗∗ (0.005) 13.72 9.03

25 Portfolios B/M and Op 1.714∗∗∗ (0.632) −2.753∗∗∗ (1.000) 0.023∗∗∗ (0.008) −0.014∗∗∗ (0.005) 12.70 5.15

32 Portfolios Size, B/M, and Inv 1.936∗∗∗ (0.641) −2.509∗∗ (0.981) 0.026∗∗∗ (0.009) −0.013∗∗ (0.005) 13.49 6.25

90 Anomaly Portfolios 1.398∗∗ (0.610) −2.616∗∗∗ (0.985) 0.024∗∗∗ (0.009) −0.021∗∗∗ (0.007) 11.20 8.84
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Figure 2: Consumption Gap and Consumer Sentiment. This figure shows the consumption
gap with two survey-based measures of consumer sentiment. The consumption gap cgap is computed as
in equation (3). Consumer Sentiment Index is from the University of Michigan Surveys of Consumers.
Consumer Confidence Index is from the Conference Board. All series are standardized to have zero mean
and unit standard deviation. Quarterly observations. The sample period is 1967Q1 to 2020Q4.
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Figure 3: Long-Horizon Predictive Regressions R2. This figure shows the in-sample R2

for the predictive regression rm,t+i = γ0 + γ1cgapt + εt+i, where rm,t+i is the log market return in excess of
the risk-free rate compounded in the period t : t + i for i = {1, 2, . . . , 40} and cgap is the consumption gap
computed as in equation (3). The dashed black lines represent 5% and 95% confidence intervals for the R2

computed by bootstrap resampling. Quarterly observations. The sample period is 1967Q1 to 2020Q4.
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Figure 4: SDF Conditional Variance. This figure shows the annualized conditional variance
of the CAPM-SDF derived using the consumption gap as conditioning variable. I calculate the conditional
variance using a GARCH(1, 1) for the SDF computed as mt+1 = 1− 0.025×Rm,t+1 + 0.013× cgaptRm,t+1.
Shaded areas are NBER recessions. Quarterly observations. The sample period is 1967Q1 to 2020Q4.
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Figure 5: The Price of Market Risk and Macro Beliefs. This figure shows the consumption
gap with the macroeconomic optimism index (OPTINDX) constructed as in Das, Kuhnen, and Nagel (2020).
The consumption gap cgap is computed as in equation (3). Both series are standardized to have zero mean
and unit standard deviation. Quarterly observations. The sample period is 1978Q1 to 2019Q4.
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Appendix

A Data

A.1 CBO Potential Output

The US Congressional Budget Office (CBO) defines potential output as the trend growth

in the productive capacity of the economy. It is a measure of maximum sustainable real

GDP—the level of real GDP that is consistent with a stable rate of inflation. Current real

GDP exceeds potential output when the rate of unemployment is below the natural rate of

unemployment. Conversely, when the unemployment rate exceeds its natural rate, real GDP

falls below potential output.

CBO uses the Solow growth model in which the real GDP growth is the product of three

input factors: capital, labor, and technology. They attribute GDP into five sectors: nonfarm

business, government, farm, households and nonprofits, and housing. For every sector, the

CBO estimates a standard production function based on labor, capital, and total factor

productivity (TFP). Specifically, sector-specific real GDP Yi is assumed to be generated by

sector-specific TFP Ai, number of hours worked Li, and level of capital stock Ki combined

into a Cobb-Douglas production function:

Yi,t = Ai,tL
(1−α)
i,t K

(α)
i,t ,

where α is the capital share—the capital contribution to output growth; it is set equal to

0.3, based on historical growth accounting data that measure payments to owners of capital

as 30 percent of total income. Aggregate real GDP is the sum of real GDP across the five

sectors.

To estimate potential output, CBO estimates for each sector the potential level of labor

force N∗i,t which is a function of the unemployment gap and business cycle dummies. With

N∗i,t in hands, they compute the potential level of hours worked L∗i,t. Then, they cyclically-

adjust TFP to remove business cycle fluctuations. Finally, they compute for each sector

potential output as Y ∗i,t = Ai,tL
∗(0.7)
i,t K

(0.3)
i,t . For a complete description of the methodology
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used by the CBO see CBO METHOD FOR ESTIMATING POTENTIAL OUTPUT.

A.2 A Large Cross-Section of Test Assets

I use the large cross-section of anomaly portfolios constructed in Kelly, Kozak, and Giglio

(2020), Haddad, Kozak, and Santosh (2020), and Kozak, Nagel, and Santosh (2020).

The original sample includes 51 anomaly characteristics. Then, I consider only anomaly

characteristics whose observations start not later than Jan 1967 and end no earlier than Dec

2019. After this filtering process, 46 anomaly characteristics are left.

In total, my final sample consists of 92 decile 1 and decile 10 anomaly portfolios. Specif-

ically, I use the following anomaly portfolios: accruals, age, aturnover, betaarb, cfp, ciss,

divg, divp, dur, ep, exchsw, fscore, gltnoa, gmargins, growth, igrowth, indmom, indmomrev,

indrrev, indrrevlv, inv, invcap, ivol, lev, lrrev, mom, mom12, momrev, nissa, nissm, noa,

price, prof, roaa, roea, season, sgrowth, shvol, size, sp, strev, valmom, valmomprof, valprof,

value.

Detailed anomaly definitions are from the aforementioned papers and can be found also

at Serhiy Kozak’s website https://sites.google.com/site/serhiykozak/data.

A.3 International Data

Aggregate consumption and potential output data are from the OECD database; consump-

tion is quarterly, potential output is annual and linearly interpolated to get quarterly ob-

servations. The IMF database provides the CPI series, while population data are from the

World Bank database.

Stock market data include all available common stocks on the Compustat/XpressFeed

Global database for Canada and UK.
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B Cointegration Analysis: Consumption Expenditures

and Real GDP

I test whether log aggregate NIPA non-durable and service expenditures and log real GDP

are cointegrated. To do this, I use testing procedure suggested by Johansen (1991). This

procedure presumes a p-dimensional vector autoregressive (VAR) model with k lags, where

p corresponds to the number of stochastic variables among which the investigator wishes

to test for cointegration. For my application, p = 2 and I choose the number of lags in

the VAR according to the Akaike information criterion (AIC). The Johansen procedure

provides two tests for cointegration: Under the null hypothesis, H0, that there are exactly

r cointegrating relations, the “Trace” statistic supplies a likelihood ratio test of H0 against

the alternative, H1, that there are p cointegrating relations. A second approach uses the “L-

max” statistic to test the null hypothesis of r cointegrating relations against the alternative

of r + 1 cointegrating relations.

Table B.1 presents the test results (along with the 90, 95, and 99 percent critical values

for these statistics). Both tests reject at 99% level of confidence the null of no cointegration

between consumption expenditures and real GDP. The estimated cointegrating vector is

(1,−1).
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Table B.1: Johansen Cointegration Test

This table reports results for the Johansen (1991) procedure to test for cointegration between the I(1) series
consumption expenditures and real GDP. Panel A reports results for the “Trace” statistics. Panel B reports
results for the “L-Max” statistics. The null hypothesis is that the number of cointegration vectors is at most
r. Testing is sequential for r∗ = 0, 1, ..., k− 1 and the first non-rejection of the null represents an estimate of
r. The number of lags for the Johansen test is chosen according to the Akaike information criterion (AIC)
and is equal to 3; I include a linear trend in the long-run regression. Quarterly observations. The sample
period is 1967:Q1 to 2020:Q4.

Panel A: Trace

Test statistics 90% CV 95% CV 99% CV

r <= 1 | 6.004 10.490 12.250 16.260
r = 0 | 40.694 22.760 25.320 30.450

Panel B: L-Max

Test statistics 90% CV 95% CV 99% CV

r <= 1 | 6.004 10.490 12.250 16.260
r = 0 | 34.690 16.850 18.960 23.650
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C Consumption: Levels vs Growth

C.1 Are Consumption Levels Trend-Stationary?

Aggregate household consumption expenditures are non-stationary. Non-stationarity in time

series processes usually generates from a trend in the mean, which can be due both to the

presence of a unit root or of a deterministic time trend. In the case of a deterministic trend,

the time series process is trend-stationary, and shocks have only transitory effects, after which

the process tends toward the time trend. In the case of a unit root, shocks have permanent

effects on the process, and the deterministically de-trended process is not mean-reverting.

Appendix Figure C.1 shows aggregate log consumption with its time trend in the top

panel. If the time trend would describe consumption levels, then the residuals from regressing

log consumption levels on their time trend would be stationary. The bottom panel of Figure

C.1 shows the deterministic trend regression residuals. The non-stationarity of the residuals

is evident; furthermore, the ADF test statistics cannot reject the null of non-stationarity

with a p-value of 0.99. This finding suggests that aggregate log consumption levels are not

trend-stationary.

C.2 Permanent and Transitory Components of

Consumption Levels

Aggregate consumption levels are integrated of order 1: they contain a stochastic trend

(Beveridge and Nelson, 1981). Largely influenced by the Box and Jenkins (1970) approach,

the problem of non-stationarity is commonly addressed by taking first differences of the

series, which implies that consumption growth is specified as a stationary i.i.d. process.

However, it is well-known that differencing rules out the possibility to study the relation

between the levels of the series (see, e.g., Stock and Watson, 1988b).

Consider the situation in which consumption levels are described by a macroeconomic

stochastic trend. In this case, some linear combination of these two variables is stationary. It

means that although different economic scenarios can cause permanent changes in aggregate

consumption or its macroeconomic stochastic trend, there is a long-run relationship binding
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Figure C.1: Aggregate Consumption and its Time Trend. This figure shows log aggregate
consumption level (expenditures on non-durables and services from NIPA, seasonally adjusted, in real per
capita terms, 2012 chain-weighted dollars) and its time trend (top panel), and residuals from regressing
consumption levels on the time trend plus a constant (bottom panel). The ADF test statistic for the
residuals is 0.63 (p-value = 0.99). Shaded areas are NBER recessions. Quarterly observations. The sample
period is 1967Q1 to 2020Q4.
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the two series together.

Thus, to retain all the economic information present in consumption expenditures lev-

els, instead of taking first-differences to address the issue of non-stationarity I propose to

decompose consumption levels in a permanent (i.e., non-stationary) and a temporary (i.e.,

stationary) component. This idea borrows from the well-known permanent-transitory decom-

position for stock prices proposed by Fama and French (1988). Specifically, log consumption

levels are the sum of two components:

ct = τt + xt ,

where τt represents the stochastic trend in aggregate consumption and xt is the transitory,

stationary component. The level of consumption is affected by changes in its stochastic

trend, τt, i.e., the stochastic trend captures shocks that have a permanent effect on con-

sumption. The stationary component, xt, captures shocks that only have a temporary effect

on aggregate consumption.

To provide a full representation of consumption level dynamics, one needs to assume

some processes for the permanent and the temporary components. I specify τt as a random

walk with drift and xt as a stationary AR(1) process with homoskedastic errors. Thus, the

system of equations specifying the dynamics of aggregate consumption levels is:

ct = τt + xt (C.1)

τt = µ+ τt−1 + ηt

xt = ρxt−1 + εt ,

with | ρ |< 1, ηt, εt ∼ i.i.d. N (0,Σ), and Σ = diag(σ2
η, σ

2
ε ).

29

The stochastic trend τt can be treated as a latent variable, and various econometric

frameworks have been proposed to filter trend and cycle from the series of interest (see, e.g.,

Beveridge and Nelson, 1981; Watson, 1986; Hamilton, 2018). Alternatively, in the spirit of,

e.g., Stock and Watson (1988a), Stock and Watson (1988b), and King, Plosser, Stock, and

29I assume that the permanent and non-permanent shocks are uncorrelated. However, it is possible to
model the correlation between the two shocks (see, e.g., Proietti, 2006). Future work could investigate the
asset pricing implications of permanent shocks also affecting transitory innovations.
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Watson (1991), I consider an empirical counterpart for τt which is observable. Specifically,

inspired by the Friedman-Modigliani permanent income hypothesis (PIH), I assume that

the stochastic trend in real GDP represents the permanent consumption component, i.e.,

τt ≡ ypott, where ypot is the log of potential output. Using this assumption together with

the representation (5), allows to interpret the cyclical component of consumption as the

consumption gap, i.e., xt ≡ cgapt.

Finally, the permanent-transitory decomposition for log consumption levels also implies

a specification for log consumption growth. Rewriting (C.1) in terms of the consumption gap

and taking the first difference, I obtain:

∆ct = µ+ ηt + ∆cgapt (C.2)

= µ+ (ρ− 1)cgapt−1 + ηt + εt

where ∆ct and ∆cgapt are respectively log consumption growth and log growth in the cyclical

component of consumption. The analytical formulation of cgapt as an AR(1) allows to

write ∆cgapt = (ρ − 1)cgapt−1 + εt. Thus, log consumption growth features two shocks: a

permanent shock, ηt, and a transitory shock, εt. µ and (ρ− 1)cgapt−1 represent respectively

the unconditional and the conditional mean of log consumption growth. In my sample,

µ = 0.48 and ρ = 0.85. For the ρ = 1 and σε = 0, specification (C.2) collapses to the

standard log consumption growth i.i.d. process.
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D Additional Results

Table D.1: Predicting Market Returns Using the Second Lag

This table reports OLS estimates and the R2 from the predictive regression: rm,t+i = γ0 + γ1cgapt−1 + εt+i,
where rm,t+i is the log market return in excess of the risk-free rate compounded in the period t : t + i and
cgap is the consumption gap computed as in equation (3). Panel A shows the in-sample results. Panel B
shows the out-of-sample results. The R2

OOS is computed as in Campbell and Thompson (2008); p-values for
R2

OOS are computed as in Clark and West (2007). I use an expanding window for estimating the predictive
regressions; the in-sample period starts in 1967Q1 and ends in 1989Q4, 1999Q4, and 2009Q4. Values in
parenthesis are heteroskedasticity and autocorrelation consistent (HAC) standard errors using Newey and
West (1987) with automatic bandwidth selection procedure as described in Newey and West (1994); for
i = {2, 3, 4}, I use overlapping observations-corrected standard errors as in Hodrick (1992). ***, **, and *
indicates respectively 1%, 5%, and 10% level of significance. Quarterly observations. The sample period is
1967Q1 to 2020Q4.

Panel A: In-Sample

rm,t+1 rm,t+2 rm,t+3 rm,t+4

(1) (2) (3) (4)

cgapt−1 −0.886∗∗∗ −1.914∗∗∗ −2.759∗∗∗ −3.439∗∗∗

(0.201) (0.614) (0.850) (1.034)

Constant 1.431∗∗∗ 2.920∗∗ 4.333∗∗ 5.665∗∗

(0.547) (1.205) (1.807) (2.408)

Observations 214 213 212 211
R2 0.038 0.065 0.092 0.112

σ[Et(rm,t+i)]/E(rm,t+i) 1.225 1.184 1.156 1.120

Panel B: Out-Of-Sample

R2
OOS From 1990 From 2000 From 2010

rm,t+1 2.99∗∗ 5.11∗∗∗ 7.89∗∗

rm,t+4 5.50∗∗∗ 11.46∗∗∗ 25.42∗∗∗

rm,t+8 14.29∗∗∗ 22.68∗∗∗ 41.10∗∗∗

rm,t+20 20.45∗∗∗ 27.98∗∗∗ 59.54∗∗∗

rm,t+40 22.60∗∗∗ 23.98∗∗∗ 42.36∗∗∗
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Table D.2: Annual Market Returns and Consumption

This table reports OLS estimates and the R2 for the regression: rm,t+4 = α+ β∆ct+4 + εt+4, where rm,t+4

is the log market return in excess of the risk-free rate compounded in the period t : t+ 4 and ∆c is the log
consumption growth. Columns (2) to (5) substitutes log consumption growth for its different components
∆ct+4 = µ+ (ρ− 1)cgapt + ηt+4 + εt+4, where η and ε are respectively the shock to the stochastic trend in
real GDP and the shock to the cgap, and cgap is the consumption gap computed as in equation (3). Values
in parenthesis are overlapping observations-corrected standard errors as in Hodrick (1992). ***, **, and *
indicates respectively 1%, 5%, and 10% level of significance. Annual returns of quarterly observations. The
sample period is 1967Q1 to 2020Q4.

rm,t+4

(1) (2) (3) (4) (5)

∆ct+4 1.685
(1.400)

cgapt −4.200∗∗∗ −4.018∗∗∗

(1.579) (1.548)

ηt+4 −3.109 −1.183
(2.808) (2.586)

εt+4 1.844 2.096
(1.722) (1.931)

Constant 2.355 6.326∗∗∗ 4.706∗∗ 5.200∗∗ 6.133∗∗∗

(3.745) (1.669) (2.091) (2.081) (1.735)

Observations 213 213 213 213 213
Adjusted R2 0.023 0.105 0.012 0.018 0.124
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Table D.3: Short-Term Rate and Consumption

This table reports OLS estimates and the R2 for the regression: it+1 = α+ β∆ct+1 + εt+1, where it+1 is the
log risk-free rate at t+ 1 and ∆c is log consumption growth. Columns (2) to (5) substitutes log consumption
growth for its different components ∆ct+1 = µ+ (ρ− 1)cgapt + ηt+1 + εt+1, where η and ε are respectively
the shock to the stochastic trend in real GDP and the shock to the cgap, and cgap is the consumption gap
computed as in equation (3). Values in parenthesis are heteroskedasticity and autocorrelation consistent
(HAC) standard errors using Newey and West (1987) with automatic bandwidth selection procedure as
described in Newey and West (1994). ***, **, and * indicates respectively 1%, 5%, and 10% level of
significance. Quarterly observations. The sample period is 1967Q1 to 2020Q4.

it+1

(1) (2) (3) (4) (5)

∆ct+1 0.052
(0.085)

cgapt 0.212∗∗∗ 0.123∗

(0.057) (0.073)

ηt+1 2.312∗∗ 1.649∗

(1.043) (0.945)

εt+1 0.045 0.003
(0.126) (0.105)

Constant 1.102∗ 1.118∗∗∗ 1.209∗∗∗ 1.124∗∗ 1.184∗∗∗

(0.566) (0.323) (0.309) (0.509) (0.233)

Observations 216 215 216 216 215
Adjusted R2 0.000 0.242 0.276 0.000 0.333
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Figure D.1: Cross-Correlogram betweeen the SDF Variance and the Gilchrist-
Zakrajsek (2012) spread. This figure shows the cross-correlation ρm,GZ = corr(σSDF

t , GZt−i), where
σSDF
t is the variance of the SDF at time t and GZt−i is the credit spread index introduced by Gilchrist and

Zakraǰsek (2012) at time t− i. . Quarterly observations. The sample period is 1967Q1 to 2020Q4.
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E VAR

Table E.1: Stock Market Returns and Consumption: A VAR Approach

This table reports OLS estimates and the R2 for the VAR specified in equation (12). The consumption
gap cgap is computed as in equation (3). ***, **, and * indicates respectively 1%, 5%, and 10% level of
significance. Quarterly observations. The sample period is 1967Q1 to 2020Q4.

rm,t+1 ∆ct+1 cgapt+1

(1) (2) (3)

rm,t −0.023 0.036∗∗∗ 0.035∗∗∗

(0.069) (0.008) (0.007)

∆ct 0.459 −0.186∗∗∗ −0.184∗∗∗

(0.639) (0.070) (0.068)

cgapt −0.967∗∗∗ 0.010 0.965∗∗∗

(0.325) (0.036) (0.035)

const 1.242∗ 0.451∗∗∗ −0.010
(0.659) (0.072) (0.070)

Observations 215 215 215
R2 0.041 0.126 0.803
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(c) Consumption gap

Figure E.1: VAR Impulse Response Function. This figure shows the impulse response
functions (IRF) for the VAR specified in equation (12). The plots display the estimated response of market
return to one standard deviation impulses in market return (Panel (a)), log consumption growth (Panel (b)),
and the consumption gap (Panel (c)). The consumption gap is computed as in equation (3). Quarterly
observations. The sample period is 1967Q1 to 2020Q4.
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Figure E.2: Long-Run Effect of a Consumption Gap Shock on Market Returns.
This figure shows the cumulative effect of a one standard deviation positive consumption gap shock on
market returns implied by the VAR specified in equation (12). The consumption gap cgap is computed as
in equation (3). Quarterly observations. The sample period is 1967Q1 to 2020Q4.
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F Returns Predictability: Further Results

F.1 Other Market Predictors: Annual

Table F.1: The Consumption Gap and Other Market Predictors

This table reports OLS estimates and the R2 from the predictive regression rm,t+4 = β0+β1xt+γ1cgapt+εt+4,
where rm,t+4 is the log market return in excess of the risk-free rate compounded in the period t : t+ 4, x is
a market predictor, and cgap is the consumption gap computed as in equation (3). In Columns (1) to (4)
I study the case γ1 = 0. Panel A shows results for the significant predictors among the sample of market
predictors analized in Welch and Goyal (2008): long-term rate of returns (ltr), CPI inflation (infl), and
the invetment-to-capital ratio (ik). Panel B shows results for cay (Lettau and Ludvigson, 2001a), surplus-
consumption ratio (s) calculated as in Wachter (2006), long-run consumption (x) calculated as in Bansal,
Kiku, and Yaron (2010), and cyclical consumption (cc) calculated as in Atanasov, Møller, and Priestley
(2020). Values in parenthesis are overlapping observations-corrected standard errors as in Hodrick (1992).
***, **, and * indicates respectively 1%, 5%, and 10% level of significance. Quarterly observations. The
sample period is 1967Q1 to 2020Q4.

Panel A: Goyal-Welch (2006)

rm,t+4

(1) (2) (3) (4) (5) (6) (7) (8)

ltrt 0.360 0.332 0.295 0.293
(0.212) (0.226) (0.206) (0.223)

inflt −2.210 −1.289 −0.491 −0.485
(2.235) (2.330) (2.227) (2.321)

ikt −16.237∗∗ −14.970∗ −8.572 −8.202
(7.897) (8.015) (8.701) (8.803)

cgapt −3.500∗∗∗ −3.487∗∗∗ −2.721∗∗ −2.616∗∗

(1.026) (1.031) (1.112) (1.101)

Observations 212 212 212 212 212 212 212 212
Adjusted R2 0.010 0.010 0.083 0.090 0.123 0.113 0.131 0.132
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Panel B: Consumption-Based Variables

rm,t+4

(1) (2) (3) (4) (5) (6) (7) (8)

cayt 1.392 1.906
(1.112) (1.160)

st −2.537∗∗ 0.104
(1.169) (2.024)

xt −0.834 0.258
(0.858) (0.954)

cct −1.685∗∗ −1.001
(0.747) (0.912)

cgapt −3.899∗∗∗ −3.666∗∗ −3.761∗∗∗ −2.740∗∗

(1.268) (1.800) (1.147) (1.276)

Observations 212 212 212 212 212 212 212 212
Adjusted R2 0.023 0.078 0.013 0.085 0.162 0.113 0.114 0.138
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F.2 Alternative Market Predictors

Table F.2: Output Gap and Consumption Gap

This table reports OLS estimates and the R2 from the predictive regression rm,t+1 = β0 + β1Xt + εt+1,
where rm,t+1 is the log market return in excess of the risk-free rate compounded in the period t : t+ 1 and
X is a matrix containing the output gap ygap = log(Y/Y POT ), the consumption gap cgap computed as in
equation (3), igap = log(I/Y POT ), and ggap = log(G/Y POT ), where Y is real GDP, I is gross private
domestic investment, G is government expenditures, and Y POT is potential output. Values in parenthesis
are heteroskedasticity and autocorrelation consistent (HAC) standard errors using Newey and West (1987)
with automatic bandwidth selection procedure as described in Newey and West (1994). ***, **, and *
indicates respectively 1%, 5%, and 10% level of significance. Quarterly observations. The sample period is
1967Q1 to 2020Q4.

rm,t+1

(1) (2) (3) (4) (5) (6) (7)

ygap −0.748∗∗∗ −0.576∗∗ −0.767∗∗∗ −0.741∗∗∗

(0.208) (0.246) (0.227) (0.237)

cgap −0.861∗∗∗ −0.393∗∗

(0.170) (0.179)

igap −0.024 0.010
(0.036) (0.033)

ggap −0.035 −0.003
(0.028) (0.029)

Constant 0.599 1.401∗∗ −3.197 −3.682 0.736 2.524 0.235
(0.631) (0.579) (6.933) (4.214) (0.666) (6.430) (4.268)

Observations 215 215 215 215 215 215 215
Adjusted R2 0.035 0.034 −0.003 0.000 0.041 0.031 0.030
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Table F.3: Consumption Gap and Consumer Sentiment

This table reports OLS estimates and the R2 from the predictive regression rm,t+1 = β0+β1xt+γ1cgapt+εt+1,
where rm,t+1 is the log market return in excess of the risk-free rate compounded in the period t : t + 1,
x is a consumer sentiment index, and cgap is the consumption gap computed as in equation (3). CSI
is the Consumer Sentiment Index from the University of Michigan Surveys of Consumers. CCI is the
Consumer Confidence Index from the Conference Board. Values in parenthesis are heteroskedasticity and
autocorrelation consistent (HAC) standard errors using Newey and West (1987) with automatic bandwidth
selection procedure as described in Newey and West (1994). ***, **, and * indicates respectively 1%, 5%,
and 10% level of significance. Quarterly observations. The sample period is 1967Q1 to 2020Q4.

rm,t+1

(1) (2) (3) (4)

CSIt −0.008 0.008
(0.022) (0.022)

CCIt −0.026∗∗ −0.012
(0.012) (0.012)

cgapt −0.949∗∗∗ −0.781∗∗∗

(0.210) (0.196)

Observations 216 214 215 214
Adjusted R2 0.000 0.013 0.029 0.031
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Table F.4: Consumption Gap and Macro-Principal Components

This table reports OLS estimates and the R2 from the predictive regression rm,t+1 = β0 +β1PCt +γ1cgapt +εt+1, where rm,t+1 is the
log market return in excess of the risk-free rate compounded in the period t : t+ 1 and cgap is the consumption gap. PC represents
one (or a combination) of the principal components extracted from a large cross-section of macroeconomic variables constructed in
Ludvigson and Ng (2009). Values in parenthesis are heteroskedasticity and autocorrelation consistent (HAC) standard errors using
Newey and West (1987) with automatic bandwidth selection procedure as described in Newey and West (1994). ***, **, and *
indicates respectively 1%, 5%, and 10% level of significance. Quarterly observations. The sample period is 1967Q1 to 2020Q4.

rm,t+1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

PC1
t 0.939 0.714 0.414 0.414

(0.717) (0.955) (0.784) (0.927)

PC2
t −2.154∗∗∗ −1.835∗∗ −1.356 −0.936

(0.762) (0.920) (0.861) (0.968)

PC3
t −2.617 −1.814 −1.819 −1.646

(2.046) (2.228) (2.042) (2.321)

PC4
t −1.027 −1.412 −1.940∗∗ −1.817∗

(0.759) (1.015) (0.813) (0.935)

PC5
t −0.479 0.167 −1.354 −0.412

(1.539) (1.697) (1.525) (1.663)

cgapt −0.814∗∗∗ −0.626∗∗∗ −0.821∗∗∗ −1.070∗∗∗ −0.978∗∗∗ −0.738∗∗∗

(0.201) (0.233) (0.214) (0.214) (0.240) (0.224)

Observations 215 215 215 215 215 215 215 215 215 215 215 215
Adjusted R2 0.008 0.029 0.009 0.000 −0.004 0.032 0.030 0.037 0.034 0.044 0.033 0.041
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F.3 Consumption Gap and Common Risk Factors

Table F.5: Predicting Other Risk Factors

This table reports OLS estimates and the R2 from the predictive regression: fn,t+1 = γn,0+γn,1cgapt+εn,t+1,
where fn,t+1 is the log factor return for factor n in the period t : t + 1 and cgap is the consumption gap
computed as in equation (3). Panel A shows the results for the Fama and French (2015) five-factor model.
Panel B shows the results for the Hou, Xue, and Zhang (2015); Hou, Mo, Xue, and Zhang (2018) five-factor
model. Panel C shows the results for the Stambaugh and Yuan (2016) mispricing factor model. Panel D
shows the results for the Daniel, Hirshleifer, and Sun (2020) behavioral factor model. Values in parenthesis
are heteroskedasticity and autocorrelation consistent (HAC) standard errors using Newey and West (1987)
with automatic bandwidth selection procedure as described in Newey and West (1994). ***, **, and *
indicates respectively 1%, 5%, and 10% level of significance. Quarterly observations. The sample period is
1967Q1 to 2020Q4; for Panel D, the sample starts in 1972Q3.

Panel A: Fama-French (2015)

SMBt+1 HMLt+1 RMWt+1 CMAt+1

cgapt −0.253 0.368∗∗ −0.007 0.169
(0.203) (0.184) (0.134) (0.112)

Observations 215 215 215 215
R2 0.007 0.013 0.000 0.006

Panel B: Hou-Mo-Xue-Zhang (2018)

MEt+1 IAt+1 ROEt+1 EGt+1

cgapt −0.155 0.264∗∗ 0.402∗∗∗ 0.517∗∗∗

(0.185) (0.121) (0.134) (0.105)

Observations 215 215 215 215
R2 0.003 0.020 0.024 0.066
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Panel C: Stambaugh-Yuan (2016)

Mgmtt+1 Perft+1

cgapt 0.394∗∗ 0.382∗∗

(0.158) (0.195)

Observations 215 215
R2 0.016 0.013

Panel D: Daniel-Hirshleifer-Sun (2020)

PEADt+1 FINt+1

cgapt 0.294∗∗ 0.592∗∗∗

(0.123) (0.170)

Observations 194 194
R2 0.030 0.025
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F.4 Value Portfolios

Table F.6: Idiosyncratic Component Predictability

This table reports OLS estimates and the R2 from the predictive regression: rIn,t+i = γn,0+γn,1cgapt+εn,t+i,

where rIn,t+i is the idiosyncratic component of the log excess return for asset n at time t+ i and cgap is the
consumption gap computed as in equation (3). First, I run the regression rn,t+i = αn,0 + βn,1rm,t+i + vn,t+i

where rn,t+i is the excess return for asset n and rm,t+i is the log market excess return. Then, I compute
the idiosyncratic component as rIn,t+i = v̂n,t+i. Test assets are the 10 Portfolios sorted on Book-to-Market.

Panel A shows the results for rIn,t+1. Panel B shows the results for rIn,t+4. Values in parenthesis are
heteroskedasticity and autocorrelation consistent (HAC) standard errors using Newey and West (1987) with
automatic bandwidth selection procedure as described in Newey and West (1994). ***, **, and * indicates
respectively 1%, 5%, and 10% level of significance. Quarterly observations. The sample period is 1967Q1 to
2020Q4.

Panel A: Quarterly Returns

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

cgapt −0.043 0.044 0.049 0.062 −0.028 0.138 0.282 0.185 0.178 0.204
(0.133) (0.095) (0.096) (0.135) (0.140) (0.173) (0.231) (0.205) (0.205) (0.270)

Constant 0.008 −0.008 −0.009 −0.012 0.005 −0.026 −0.053 −0.035 −0.034 −0.038
(0.290) (0.162) (0.161) (0.244) (0.254) (0.294) (0.409) (0.354) (0.394) (0.507)

Observations 216 216 216 216 216 216 216 216 216 216
R2 0.000 0.001 0.001 0.001 0.000 0.004 0.011 0.004 0.003 0.002

Panel B: Annual Returns

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

cgapt 0.664 0.295 0.036 −0.108 −0.320 −0.264 −0.407 −0.062 −0.133 −0.243
(1.179) (0.561) (0.616) (1.109) (1.334) (1.448) (2.239) (1.552) (1.573) (2.856)

Constant −0.183 −0.081 −0.010 0.030 0.088 0.073 0.112 0.017 0.037 0.067
(2.012) (0.828) (0.826) (1.522) (1.617) (1.752) (3.497) (2.236) (2.218) (3.449)

Observations 213 213 213 213 213 213 213 213 213 213
R2 0.012 0.006 0.000 0.000 0.003 0.002 0.002 0.000 0.000 0.000
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Figure F.1: Value Portfolios and the Consumption Gap. This figure shows log excess
returns and fitted values for the predictive regression: ri,t+4 = γi,0 + γi,1cgapt + εi,t+4, where ri,t+4 is the
log excess return for asset i at time t + 4 and cgap is the consumption gap computed as in equation (3).
Test assets are the 10 Portfolios sorted on Book-to-Market. The average R2 across the 10 Value Portfolios
is 8.5%. Shaded areas are NBER recessions. Annual returns of quarterly observations. The sample period
is 1967Q1 to 2020Q4.
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F.5 Alternative Trends in Real GDP

Table F.7: Predicting Market Returns: Quadratic Trend

This table reports OLS estimates and the R2 from the predictive regression: rm,t+i = γ0+γ1cgap
quadr
t +εt+i,

where rm,t+i is the log market return in excess of the risk-free rate compounded in the period t : t + i and

cgapquadrt is the difference between aggregate consumption and the trend in real GDP computed as the fitted
value of a regression of real GDP on a deterministic trend plus the quadratic trend component. Panel A
shows the in-sample results. Panel B shows the out-of-sample results. The R2

OOS is computed as in Campbell
and Thompson (2008); p-values for R2

OOS are computed as in Clark and West (2007). I use an expanding
window for estimating both the predictive regressions and the trend in real GDP; the in-sample period
starts in 1967Q1 and ends in 1989Q4, 1999Q4, and 2009Q4. Values in parenthesis are heteroskedasticity and
autocorrelation consistent (HAC) standard errors using Newey and West (1987) with automatic bandwidth
selection procedure as described in Newey and West (1994); for i = {2, 3, 4}, I use overlapping observations-
corrected standard errors as in Hodrick (1992). ***, **, and * indicates respectively 1%, 5%, and 10% level
of significance. Quarterly observations. The sample period is 1967Q1 to 2020Q2.

Panel A: In-Sample

rm,t+1 rm,t+2 rm,t+3 rm,t+4

(1) (2) (3) (4)

cgapquadrt −0.780∗∗∗ −1.519∗∗∗ −2.350∗∗∗ −2.985∗∗∗

(0.203) (0.483) (0.691) (0.868)

Constant 1.398∗∗∗ 2.787∗∗ 4.256∗∗ 5.554∗∗

(0.524) (1.205) (1.807) (2.408)

Observations 215 214 213 212
R2 0.048 0.087 0.119 0.151

Panel B: Out-Of-Sample

R2
OOS From 1990 From 2000 From 2010

rm,t+1 1.40∗ 1.34∗ 4.79∗∗

rm,t+4 3.64∗∗∗ 3.35∗∗∗ 13.87∗∗∗

rm,t+8 10.73∗∗∗ 15.79∗∗∗ 30.49∗∗∗

rm,t+20 20.86∗∗∗ 38.92∗∗∗ 51.04∗∗∗

rm,t+40 23.44∗∗∗ 39.21∗∗∗ 5.61∗∗
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Table F.8: Predicting Market Returns: Laubach and Williams (2003)

This table reports OLS estimates and the R2 from the predictive regression: rm,t+i = γ0 + γ1cgap
LW2003
t +

εt+i, where rm,t+i is the log market return in excess of the risk-free rate compounded in the period t : t+ i
and cgapLW2003

t is the difference between aggregate consumption and the potential output computed using
a Kalman filter as in Laubach and Williams (2003). Panel A shows the in-sample results. Panel B shows
the out-of-sample results. The R2

OOS is computed as in Campbell and Thompson (2008); p-values for R2
OOS

are computed as in Clark and West (2007). I use an expanding window for estimating both the predictive
regressions and the potential output; the in-sample period starts in 1967Q1 and ends in 1989Q4, 1999Q4,
and 2009Q4. Values in parenthesis are heteroskedasticity and autocorrelation consistent (HAC) standard
errors using Newey and West (1987) with automatic bandwidth selection procedure as described in Newey
and West (1994); for i = {2, 3, 4}, I use overlapping observations-corrected standard errors as in Hodrick
(1992). ***, **, and * indicates respectively 1%, 5%, and 10% level of significance. Quarterly observations.
The sample period is 1967Q1 to 2020Q2.

Panel A: In-Sample

rm,t+1 rm,t+2 rm,t+3 rm,t+4

(1) (2) (3) (4)

cgapLW2003
t −0.673∗∗∗ −1.415∗∗ −2.623∗∗∗ −3.349∗∗∗

(0.194) (0.720) (0.919) (1.120)

Constant 1.313∗∗ 2.684∗∗ 4.150∗∗ 5.463∗∗

(0.595) (1.208) (1.812) (2.414)

Observations 215 214 213 212
R2 0.023 0.049 0.074 0.089

Panel B: Out-Of-Sample

R2
OOS From 1990 From 2000 From 2010

rm,t+1 2.19∗ 1.24 4.15
rm,t+4 8.43∗∗∗ 4.33∗∗∗ 9.14∗∗∗

rm,t+8 14.50∗∗∗ 8.94∗∗∗ 13.01∗∗∗

rm,t+20 9.37∗∗∗ -1.46 17.64∗∗∗

rm,t+40 -1.28 -8.78 -6.37
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F.6 Alternative Permanent Component Measures

Table F.9: Predicting Market Returns: Real Disposable Income

This table reports OLS estimates and the R2 from the predictive regression: rm,t+i = γ0 + γ1cxt + εt+i,
where rm,t+i is the log market return in excess of the risk-free rate compounded in the period t : t+ i and cx
is the difference between aggregate consumption and the trend in real disposable income computed utilizing
the methodology proposed by Hamilton (2018). Panel A shows the in-sample results. Panel B shows the
out-of-sample results. The R2

OOS is computed as in Campbell and Thompson (2008); p-values for R2
OOS are

computed as in Clark and West (2007). I use an expanding window for estimating the predictive regressions;
the in-sample period starts in 1967Q1 and ends in 1989Q4, 1999Q4, and 2009Q4. Values in parenthesis are
heteroskedasticity and autocorrelation consistent (HAC) standard errors using Newey and West (1987) with
automatic bandwidth selection procedure as described in Newey and West (1994); for i = {2, 3, 4}, I use
overlapping observations-corrected standard errors as in Hodrick (1992). ***, **, and * indicates respectively
1%, 5%, and 10% level of significance. Quarterly observations. The sample period is 1967Q1 to 2020Q4.

Panel A: In-Sample

rm,t+1 rm,t+2 rm,t+3 rm,t+4

(1) (2) (3) (4)

cxt −0.377∗∗∗ −0.752∗∗∗ −1.096∗∗ −1.450∗∗∗

(0.127) (0.290) (0.427) (0.558)

Constant 1.386∗∗ 2.737∗∗ 4.083∗∗ 5.309∗∗

(0.563) (1.205) (1.807) (2.408)

Observations 215 214 213 212
R2 0.030 0.059 0.082 0.113

Panel B: Out-Of-Sample

R2
OOS From 1990 From 2000 From 2010

rm,t+1 4.32∗∗ 5.78∗∗ 9.57∗∗∗

rm,t+4 14.47∗∗∗ 16.2∗∗∗ 38.62∗∗∗

rm,t+8 20.85∗∗∗ 25.98∗∗∗ 48.23∗∗∗

rm,t+20 26.39∗∗∗ 48.40∗∗∗ 68.32∗∗∗

rm,t+40 6.52∗∗∗ 30.08∗∗∗ 41.74∗∗∗
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G International Evidence

Table G.1: Stock Market Predictability: Canada and UK

This table reports OLS estimates and the R2 for the predictive regression: ri,t+1 = α + βcgapit + εt+1,
where ri,t+1 is the log market return of country i compounded in the period t : t + 1 and cgapi is the
consumption gap of country i computed as in equation (3) using consumption and potential output data for
country i. In Columns (2) and (4), I also control for the US consumption gap. Values in parenthesis are
heteroskedasticity and autocorrelation consistent (HAC) standard errors using Newey and West (1987) with
automatic bandwidth selection procedure as described in Newey and West (1994). ***, **, and * indicates
respectively 1%, 5%, and 10% level of significance. Quarterly observations. The sample period is 1985Q1 to
2020Q4.

rCAN,t+1 rGBR,t+1

(1) (2) (3) (4)

cgapCANt −0.432∗∗ −0.414∗∗

(0.208) (0.205)

cgapGBRt −0.436∗∗ −0.517∗∗

(0.182) (0.215)

cgapt −0.246 0.301
(0.295) (0.370)

Observations 140 140 140 140
R2 0.011 0.014 0.029 0.031
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